Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (6): 1959-1968.doi: 10.13229/j.cnki.jdxbgxb20180583

Previous Articles     Next Articles

Flow field reconstruction accuracy influence of proper orthogonal decomposition basis functions in hydrodynamic retarderunder full⁃filled operating condition

Wei WEI1,2(),Xu LIU1,Xue-yong HAN1,Qing-dong YAN1,2   

  1. 1. National Key Laboratory of Vehicular Transmission, Beijing Institute of Technology, Beijing 100081, China
    2. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2018-06-07 Online:2019-11-01 Published:2019-11-08

Abstract:

In order to study the influence of Proper Orthogonal Decomposition (POD) basis functions on the accuracy of flow field reconstruction, the velocity and pressure proper orthogonal bases were obtained respectively for the flow field on the stator interaction surface of hydraulic retarder under full-filled condition. The influences of the instantaneous image factors and rotational speed factors on the proper orthogonal basis were studied, and the flow field is predicted by means of proper orthogonal basis and surrogate model technology. Results show that both the spiting of snapshots database and the frequency of sampling snapshots have significant effects on flow field reconstruction accuracy by POD basis functions while the features of POD basis functions are immune to the speed of the rotor, and the flow field reconstruction based on POD basis is of certain accuracy.

Key words: fluid transmission and control, hydrodynamic retarder, proper orthogonal decomposition basis function, snapshot, sampling frequency, flow field reconstruction

CLC Number: 

  • TH137

Fig.1

Structure diagram of hydraulic retarder"

Fig.2

Full flow channel model of hydrodynamicretarder"

Table 1

Time step settings under different conditions"

转速/(r·min-1)周期/s总时间步数时间步长/(10-4 s)
5000.128002.4
1 0000.248001.2

Fig.3

Change history of brake torque"

Fig.4

POD base energy under differentsnapshots ensemble"

Table 2

Sanpshots sampling frequency setting"

瞬像数目50100125250500
时间间隔/ms1.20.60.480.240.12
采样频率/Hz83.31 666.662 083.34 166.68 333.3

Fig.5

Energy comparison at differentsampling frequencies"

Fig.6

POD reconstruction error"

Fig.7

Comparison of first two POD bases at different speeds"

Fig.8

Comparison of the fifth and sixth modes"

Fig. 9

Energy distribution at different speeds"

Fig.10

Distribution of the first two order POD bases at different rotational speeds"

Fig.11

Reconstruction error analysis"

Fig.12

Pressure surface pressure predictionanalysis at 1 125 r/min"

Fig.13

Pressure surface pressure predictionanalysis at 3 000 r/min"

1 袁哲. 重型车液力缓速器热流耦合与散热系统研究[D].长春:吉林大学机械科学与工程学院, 2013.
1 YuanZhe. Study on heat-flow coupling and heat transfer system of hydrodynamic retarder of heavy vehicle[D]. Changchun: College of Mechanical Science and Engineering, Jilin University, 2013.
2 闫清东, 邹波, 魏巍, 等. 液力减速器充液过程瞬态特性三维数值模拟[J]. 农业机械学报, 2012, 43(1): 12-17.
2 YanQing-dong, ZouBo, WeiWei, et al. Numerical investigation on transient oil-filling process of hydraulic retarder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(1): 12-17.
3 卢秀泉, 褚亚旭, 才委, 等. 基于一维束流理论的液力减速器部分充液特性预测[J]. 吉林大学学报:工学版, 2011, 41(4): 988-992.
3 LuXiu-quan, ChuYa-xu, CaiWei, et al. Predicting method for partial-filling performance of hydrodynamic retarder based on one-dimensional flow beam theory[J]. Journal of Jilin University(Enginersity and Technology Edition), 2011, 41(4): 988-992.
4 LegresleyP A, AlonsoJ J. Investigation of non-linear projection for pod based reduced order models for aerodynamics[J]. AIAA paper, 2001: 1-15.
5 PlaF, HerreroH, VegaJ M. A flexible symmetry-preserving Galerkin/POD reduced order model applied to a convective instability problem[J]. Computers & Fluids, 2015, 119: 162-175.
6 LumleyJ L. The Structure of Inhomogeneous Turbulence[C]∥Atmospheric Turbulence and Ratio Wave Propagation, Moscow, Nauka, 1967:166-178.
7 SirovichL. Turbulence and the dynamics of coherent structures. Part I: Coherent structures[J]. Quarterly of Applied Mathematics, 1987,45(3): 561-571.
8 SinglerJ R, BattenB A. Balanced POD for linear PDE robust control computations[J]. Computational Optimization and Applications, 2012, 53(1): 227-248.
9 PodvinB. A proper-orthogonal-decomposition–based model for the wall layer of a turbulent channel flow[J]. Physics of Fluids, 2009, 21(1): 015111.
10 WangZ, AkhtarI, BorggaardJ, et al. Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison[J]. Computer Methods in Applied Mechanics & Engineering, 2012, 237: 10-26.
11 TerragniF, VegaJ M. Construction of bifurcation diagrams using POD on the fly[J]. SIAM Journal on Applied Dynamical Systems, 2014, 13(1): 339-365.
12 HolmesP, LumleyJ, BerkoozG. Turbulence, Coherent Structures, Dynamical Systems and Symmetry[M]. Cambridge: Cambridge University Press, 1996.
13 CizmasP G A, RichardsonB R, BrennerT A, et al. Acceleration techniques for reduced-order models based on proper orthogonal decomposition[J]. Journal of Computational Physics, 2008, 227(16): 7791-7812.
14 康伟, 代向艳, 刘凝. 低速翼型绕流的多模态耦合与流动稳定性研究[J]. 西北工业大学学报, 2015, 33(3): 382-387.
14 KangWei, DaiXiang-yan, LiuNing. Multi-modal interaction and flow instability of flow around an airfoil at low reynolds number[J]. Journal of Northwestern Polytechnical University, 2015, 33(3): 382-387.
[1] Jun-long LIU,Dong-ye SUN,Xiao-jun LIU,Yong YOU. Speed ratio control of electro⁃mechanical continuously variable transmission based on coupling characteristic [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1951-1958.
[2] Xiu-quan LU,Chun-yu HU,Ya-long CHAI,Wen-xing MA,Jian-nan ZHANG. Analysis of transient flow field characteristics of large-scale hydrodynamic coupling under speed regulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1539-1546.
[3] Xiao-jing WANG,Mei-zhen LIU,Shuai CHEN,Song LI. Predictive function and sliding model controller of continuous rotary electro⁃hydraulic servo motor applied to simulator [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1547-1557.
[4] De⁃sheng WEN,Guang⁃dong SUI,Shan⁃heng TIAN,Shao⁃peng WANG,Pei⁃kun FENG,Xiao⁃xue LIU. Leakage/volumetric efficiency analysis and experiment of internal and external meshing gear motors [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1186-1193.
[5] LIU Xiang-yong, LI Wan-li. Electro-hydraulic proportional control model of accumulator [J]. 吉林大学学报(工学版), 2018, 48(4): 1072-1084.
[6] LIU Guo-jun, MA Xiang, YANG Zhi-gang, WANG Cong-hui, WU Yue, WANG Teng-fei. Integrated pulsation micro mixing chip for three-phase flow [J]. 吉林大学学报(工学版), 2018, 48(4): 1063-1071.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] LIU Guo-jun, ZHANG Yan-yan, YANG Xu-hao, LI Xin-bo, LIU Jian-fang, YANG Zhi-gang. Application of surface acoustic wave in controlled synthesis of gold nanoparticles [J]. 吉林大学学报(工学版), 2017, 47(4): 1102-1108.
[9] WEN De-sheng, CHEN Fan, ZHEN Xin-shuai, ZHOU Cong, WANG Jing, SHANG Xu-dong. Application of pressure control loop with double-stator pumps and motors [J]. 吉林大学学报(工学版), 2017, 47(2): 504-509.
[10] WEN De-sheng, LIU Qiao-yan, LIU Zhong-xun, GAO Jun-feng, ZHOU Rui-bin. Rotor radial force of double-stator single-acting motor [J]. 吉林大学学报(工学版), 2015, 45(6): 1825-1830.
[11] WEN De-sheng, ZHENG Zhen-quan, WANG Yuan, YANG Jie, ZHANG Kai-ming, ZHANG San-xi. Analysis of rotational speed and torque of differential connection of asymmetric multi-speed hydraulic motor [J]. 吉林大学学报(工学版), 2014, 44(5): 1342-1346.
[12] MA Wen-xing,HU Jing,CHU Ya-xu,WANG Song-lin,WU Yue-shi. Dynamic load strength analysis of over-running clutch of dual turbine torque [J]. 吉林大学学报(工学版), 2014, 44(3): 675-679.
[13] MA Wen-xing, SONG Jian-jun, LIU Chun-bao, HU Jing, CHU Ya-xu. Calculation method of outlet pressure of open-type hydrodynamic retarder [J]. 吉林大学学报(工学版), 2014, 44(01): 86-90.
[14] YUAN Zhe, MA Wen-xing, LU Xiu-quan, HU Jing, YANG Shan-shan. Dynamic braking performance prediction and analysis of hydrodynamic retarder [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 160-164.
[15] YUAN Zhe, MA Wen-xing, LI Hua-long, HU Jing, ZHOU Qian-qian. Match of heat exchanger and simulation analysis based on hydrodynamic retarder of heavy vehicle [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 526-529.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Jin Man, Jiang Zhong-hao, Lian Jian-she . Calculation and prediction of critical elastic modulus of short fiberreinforced metal matrix composites[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 1 -05 .
[2] Wang Xiao-bing,Chen Jian-jun,Gao Wei,Zhao Jun,Li Jin-ping. Sensitivity analysis of transient thermal field for composite plates[J]. 吉林大学学报(工学版), 2006, 36(04): 456 -461 .
[3] Li Shao-hua,Huang Hui,Guo Ting-ting,Pu Jian-ye. Numerical simulations of particle trajectory in turbulent jettocross flow[J]. 吉林大学学报(工学版), 2006, 36(06): 1029 -1033 .
[4] Chen Yong-heng, Ge Xing, Wang Dian-hai. Analysis on speed-flow characteristics at typical sections in urban arteries[J]. 吉林大学学报(工学版), 2006, 36(04): 613 -617 .
[5] SU Junlin , LI Bo ,JIAO Zhenwei. Heat Transfer Performance of Flat Heat Pipe with Micro Rectangle Grooves[J]. 吉林大学学报(工学版), 2005, 35(06): 592 -0595 .
[6] Guo Kong-hui;Wang Shuang;Ding Hai-tao;Zhang Jian-wei . Elastic coupling characteristic of unsymmetrical rubber bushings of rear suspension[J]. 吉林大学学报(工学版), 2007, 37(06): 1225 -1228 .
[7] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1304 -1307 .
[8] . [J]. 吉林大学学报(工学版), 2005, 35(03): 314 -318 .
[9] Wang Zhan-shan, Zhang Hua-guang, Li Shu-xia. Global asymptotic stability of cellular neural networks with multiple time-varying delays[J]. 吉林大学学报(工学版), 2006, 36(04): 564 -568 .
[10] WANG Zhanshan , , ZHANG Huaguang . Exponential Stability of Neural Networks with Multiple TimeVarying Time Delays[J]. 吉林大学学报(工学版), 2005, 35(06): 621 -0625 .