Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (6): 1745-1755.doi: 10.13229/j.cnki.jdxbgxb20180699

    Next Articles

Position and attitude closed loop control of wheelleggedall terrain mobile robot

Fang-wu MA1,2(),Li-wei NI1,2,Liang WU1,2(),Jia-hong NIE1,2,Guang-jian XU1,2   

  1. 1. College of Automotive Engineering, Jilin University, Changchun 130022, China
    2. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
  • Received:2018-07-09 Online:2019-11-01 Published:2019-11-08
  • Contact: Liang WU E-mail:mikema@jlu.edu.cn;jluniliwei@163.com

Abstract:

When the wheel-legged robot is in the state of obstacle crossing, it is inevitable to change the attitude and position (centroid position and pitch and roll attitude). In order to control its position and attitude, the multi-link suspension system of automobile is adopted to design a new wheel-legged robot to ensure the stability in complex environment. Firstly, the single leg kinematics model of the wheel-legged robot is established, and a single leg test bench is built to verify the correctness of the model. Then, the pitching and rolling model is established for the position and attitude of the wheel-legged robot, and the position and attitude of the wheel-legged robot are decoupled. the closed-loop control of the robot is realized in the condition that the position components of the center (x, y, z) of the wheel-legged robot are constants. Then, the proportional control (P-control) is used to build the control strategy of the wheel-legged robot in Simulink. Finally, the virtual prototype of the wheel-legged robot is created in Adams, and the PAC tire model is built for the large outer angle, and the joint simulation model of Simulink and Adams is used to confirm the effectiveness of the control strategy on the three-dimensional slope. Simulation results show that the centroid position and attitude of the wheel-legged robot have good tracking effect, and the position error and attitude error are controlled within 4.3% and 5% respectively, so the effectiveness of the control strategy of the wheel-legged robot is verified.

Key words: vehicle engineering, wheel-legged robot, position and attitude model, control algorithm, joint simulation

CLC Number: 

  • U469.3

Fig.1

Structure diagram of all terrainwheel-legged robot"

Fig.2

1/4 platform model"

Fig.3

Schematic diagram of vertical view ofmulti-link suspension is equivalentto double wishbone suspension"

Fig.4

Pitching schematic diagram of robot withfixed center of mass"

Fig.5

Equivalent four bar linkage model"

Fig.6

Test equipment and bench"

Table 1

Main dimension parameters ofsingle leg of robot"

参 数数值
多连杆悬架长度/mm264
车轮半径/mm130
作动器工作长度L初始值/mm502
三角架DEC三条边长度/mm388/234/205
三脚架支点与作动器支点距离EF/mm370
等效双横臂悬架BG长度/mm200
机身厚度EG/mm300
弹簧阻尼BC长度/mm270
轮腿长度AW/mm400
多连杆夹角/(°)37.5

Table 2

Comparison table of theoreticalanalysis and test"

分析类型序号

作动器工作

长度/mm

转角/(°)
试验1450103.501
2460101.085
347098.996
448096.096
549093.709
650090.711
751087.889
852084.524
953081.495
1054077.971
1155074.311
理论12参照式(8)

Fig.7

Comparison diagram of theoretical andexperimental data"

Fig.8

1/4 robot model"

Fig.9

Simulink simulation model of 1/4 robot dynamics"

Table 3

Simulation parameters"

参数符号数值单位
路面不平度G00.262m3
参考空间频率n00.1m-1
行驶速度v0.5m/s
频率指数W2.0-
弹簧弹性系数K220 000N/m
阻尼系数C1 000N·m/s
1/4整车簧上质量m240kg
1/4整车簧下质量m110kg
轮胎弹性系数K1180 000N/m

Fig.10

Simulation result of suspension dynamicdisplacement"

Fig.11

Schematic diagram of pitching attitudecontrol on slope"

Fig.12

Rolling attitude control on the slope"

Fig.13

Schematic diagram of robot bodyattitude projection"

Fig.14

Robot body simplified attitude projection"

Fig.15

Position and posture control blockdiagram of wheel-leg"

Fig.16

Information interaction diagram ofSimulink and Adams"

Fig.17

Simulink and Adams joint simulation"

Table 4

Structural parameters of wheel-legged robot"

参数数值参数数值
H/mm460L3/mm200
H1/mm75L4/mm230
H2/mm150L5/mm300
H3/mm400L6/mm200
L1/mm250L7/mm270
L2/mm370

Table 5

Position and pose parameters ofwheel-legged robot"

位姿位置参数姿态参数
x分量/mmy分量/mmz分量/mm横摆角/(°)俯仰角/(°)侧倾角/(°)
初始45000063
目标45000000

Fig.18

Position and posture adjustment process of wheel-legged robot"

Fig.19

Position and posture tracking results"

Table 6

Error analysis table"

跟踪误差参数误差值误差率/%
质心位置x分量/mm30.6
质心位置y分量/mm61.2
质心位置z分量/mm204.3
姿态俯仰角/(°)0.23
姿态横摆角/(°)0.062
姿态侧倾角/(°)0.155
1 ZhuangH C, GaoH B, DingL, et al. Method for analyzing articulated torques of heavy-duty six-legged robot[J]. Chinese Journal of Mechanical Engineering, 2013, 26(4): 801-812.
2 郑楚婷, 宋光明, 乔贵方, 等. 具有主动腰关节的四足机器人在间歇性对角小跑步态下的姿态平衡控制[J]. 机器人, 2016, 38(6): 670-677.
2 ZhengChu-ting, SongGuang-ming, QiaoGui-fang, et al. Posture balance control of the quadruped robot with an activewaist joint during intermittent trot locomotion[J]. Robot, 2016, 38(6): 670-677.
3 罗陆锋, 邹湘军, 程堂灿, 等. 采摘机器人视觉定位及行为控制的硬件在环虚拟试验系统设计[J]. 农业工程学报, 2017, 33(4): 39-46.
3 LuoLu-feng, ZouXiang-jun, ChengTang-can, et al. Design of virtual test system based on hardware-in-loop for picking robot vision localization and behavior control[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(4): 39-46.
4 王海燕, 李贻斌, 宁龙霄. 液压驱动双足机器人运动系统的设计及实现[J]. 吉林大学学报: 工学版, 2014, 44(3): 750-756.
4 WangHai-yan, LiYi-bin, NingLong-xiao. Design and implementation of a hydraulic actuated biped robot motion system[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(3): 750-756.
5 郭云龙, 刘少刚, 贾鹤鸣. 基于刚-柔并联连杆系统的越障机器人动力学分析[J]. 吉林大学学报: 工学版, 2013, 43(6): 1581-1588.
5 GuoYun-long, LiuShao-gang, JiaHe-ming. Kinematics analysis on obstacle-crossing robot based on rigid-flexible parallel linkage mechanism system[J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(6): 1581-1588.
6 张帅帅, 荣学文, 李贻斌, 等. 崎岖地形环境下四足机器人的静步态规划方法[J]. 吉林大学学报: 工学版, 2016, 46(4): 1287-1296.
6 ZhangShuai-shuai,RongXue-wen,LiYi-bin,et al. Static gait planning method for quadruped robots on rough terrainst[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(4): 1287-1296.
7 李满天, 蒋振宇, 王鹏飞, 等. 基于多虚拟元件的直腿四足机器人Trot步态控制[J]. 吉林大学学报: 工学版, 2015, 45(5): 1502-1511.
7 LiMan-tian, JiangZhen-yu, WangPeng-fei, et al. Trotting gait control of quadruped robot with straight legs based on virtual elements[J]. Journal of Jilin University(Engineering and Technology Edition), 2015, 45(5): 1502-1511.
8 苏文海, 李冰, 袁立鹏, 等. 立体坡面农业四足移动平台姿态控制策略与试验[J]. 农业工程学报, 2018, 34(4): 80-91.
8 SuWen-hai, LiBing, YuanLi-peng, et al. Strategy and experiment of attitude control for quadruped mobile platform walking on three-dimensional slope used for agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(4): 80-91.
9 BecharA, VigneaultC. Agricultural robots for field operations: concepts and components[J]. Biosystems Engineering, 2016, 149: 94-111.
10 刘本勇, 高峰, 姜惠, 等. 平衡摇臂式移动机器人姿态控制算法[J]. 北京航空航天大学学报, 2018, 44(2): 391-398.
10 LiuBen-yong, GaoFeng, JiangHui, et al. Attitude control algorithm of balancing-arm mobile robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 391-398.
11 李艳生, 杨美美, 孙汉旭, 等. 一种摆式球形机器人水中俯仰运动的稳定控制方法[J]. 振动与冲击, 2018, 37(13): 149-154, 189.
11 LiYan-sheng, YangMei-mei, SunHan-xu, et al. A stability control method for pitching motion in water of a pendulum type spherical robot[J]. Journal of Vibration and Shock, 2018, 37(13): 149-154, 189.
12 GrandC, BenamarF, PlumetF. Motion kinematics analysis of wheeled-legged rover over 3D surface with posture adaptation[J]. Mechanism and Machine Theory, 2010, 45(3): 477-495.
13 常勇, 马书根, 王洪光, 等. 轮式移动机器人运动学建模方法[J]. 机械工程学报, 2010, 46(5): 30-36.
13 ChangYong, MaShu-gen, WangHong-guang, et al. Method of kinematic modeling of wheeled mobile robot[J]. Journal of Mechanical Engineering, 2010, 46(5): 30-36.
14 AlamdariA, KroviV N. Static balancing of highly reconfigurable articulated wheeled vehicles for power consumption reduction of actuators[J]. International Journal of Mechanisms and Robotic Systems, 2016, 3(1): 15-31.
15 RaibertM, BlankespoorK, NelsonG, et al. BigDog, the Rough-Terrain Quadruped Robot[J]. IFAC Proceedings Volumes, 2008, 41(2):10822-10825.
16 ZhuangHong-chao, GaoHai-bo, DingLiang, et al. Method for analyzing articulated torques of heavy-duty six-legged robot[J]. Chinese Journal of Mechanical Engineering, 2013, 26(4): 801-812.
17 潘希样, 徐坤, 王耀兵, 等. 具有悬挂系统的轮腿式机器人设计与分析[J]. 机器人, 2018, 40(3): 309-320.
17 PanXi-yang, XuKun, WangYao-bing, et al. Design and analysis of a wheel-legged robot with a suspension system[J]. Robot, 2018, 40(3): 309-320.
18 钟银辉, 李以农, 杨超, 等. 基于主动悬架控制轮边驱动电动车垂向振动研究[J]. 振动与冲击, 2017, 36(11): 242-247.
18 ZhongYin-hui, LiYi-nong, YangChao, et al. Vertical vibration of in-wheel motor electric vehicles based on active suspension control[J]. Journal of Vibration and Shock, 2017, 36(11): 242-247.
19 ParkS, LeeY J. Gait analysis of a quadruped walking robot with vertical waist-joint on slope[J] IFAC Proceedings Volumes, 2009, 14: 507-512.
20 KoopmanB, van AsseldonkE H F, van der KooijH. Speed-dependent reference joint trajectory generation for robotic gait support[J]. Journal of Biomechanics, 2014, 47(6):1447-1458.
[1] Xin CHEN,Xin-jian RUAN,Ming LI,Ning WANG,Jia-ning WANG,Kai-xuan PAN. Application of modified discrete scheme based onlarge eddy simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1756-1763.
[2] Ren HE,Kun TU. Electromagnetic brake with changed⁃temperature air gap width [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1777-1785.
[3] Li-qiang JIN, Duan-yang TIAN, Hao TIAN, Meng-meng LIU. Brake force assistant technology for vehicle electronicstability control system [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1764-1776.
[4] Jie LI, Wen-cui GUO, Qi ZHAO, Sheng-feng GU. Road roughness identification based on vehicle responses [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1810-1817.
[5] Xin GUAN,Hao JIN,Chun-guang DUAN,Ping-ping LU. Estimation of lateral slope of vehicle driving road [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1802-1809.
[6] Yang WANG,Zhan⁃shuai SONG,Kong⁃hui GUO,Ye ZHUANG. Measurement of inertial parameters of rotating inertia rig [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1795-1801.
[7] Qiao-bin LIU,Wen-ku SHI,Zhi-yong CHEN,Lian-meng LUO,Zhi-yong SU,Kai-jun HUANG. Parameter estimation of mixed reliability model based on kernel density optimal grouping and gravity search algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1818-1825.
[8] Wei-min ZHUANG,Yang LIU,Peng-yue WANG,Hong-da SHI,Ji-shuan XU. Simulation on peeling failure of self⁃piercing riveted joints insteel and aluminum alloy dissimilar sheets [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1826-1835.
[9] Bai-chao CHEN,Meng ZOU,Zhao-long DANG,Han HUANG,Yang JIA,Rui-yang SHI,Jian-qiao LI. Experiment on pressure⁃sinkage for mesh wheels of CE⁃3lunar rover on lunar regolith [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1836-1843.
[10] Fang-wu MA,Lu HAN,Yang ZHOU,Shi-ying WANG,Yong-feng PU. Multi material optimal design of vehicle product using polylactic acid composites [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1385-1391.
[11] Zhen-hai GAO,Tian-jun SUN,Lei HE. Causal reasoning decision⁃making for vehicle longitudinal automatic driving [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1392-1404.
[12] Bo ZHANG,Jian-wei ZHANG,Kong-hui GUO,Hai-tao DING,Hong-qing CHU. Current control of permanent magnet synchronous motor for road feeling simulation [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1405-1413.
[13] Peng-yu WANG,Shi-jie ZHAO,Tian-fei MA,Xiao-yong XIONG,Xin CHENG. Vehicle multi-sensor target tracking and fusion algorithm based on joint probabilistic data association [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1420-1427.
[14] Xing-jun HU,Zheng HUI,Peng GUO,Yang-hui ZHANG,Jing-long ZHANG,Jing-yu WANG,Fei LIU. Characteristics of aerodynamics for an automobile by fluid-structure coupled method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1414-1419.
[15] Xiao-jian HAN,Wei-qiang ZHAO,Li-jun CHEN,Hong-yu ZHENG,Yang LIU,Chang-fu ZONG. Local path planning of bus based on RS-RRT algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1428-1440.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Tian-ling, Li Jun, Wu Jun-hua, Wang Zhan-feng. Synergic effects of EGR and VNT on exhaust emissions from turbocharged diesel engine[J]. 吉林大学学报(工学版), 2006, 36(04): 493 -496 .
[2] Dong Wei, Yu Xiu-min, Zhang You-kun . CVT control strategies for engine brake on long downhill of vehicle [J]. 吉林大学学报(工学版), 2006, 36(05): 650 -0653 .
[3] JIANG Yue, TANG Chang-jie, LI Chuan, LI Sheng-zhi, YE Shang-yu, WU Jiang . Identification of Hammerstein model based on gene expression programming [J]. 吉林大学学报(工学版), 2008, 38(05): 1114 -1119 .
[4] Yang Zhijun, Tian Di, Zhou Bin. Network monitor based on NDIS intermediate driver[J]. 吉林大学学报(工学版), 2006, 36(02): 224 -0226 .
[5] Su Jun-lin,Wang Zhen-kun,Jiao Zhen-wei . High efficiency and low pollution heating equipment with gasliquid
direct mix and phase change heat transfer
[J]. 吉林大学学报(工学版), 2008, 38(02): 278 -0282 .
[6] Zhang Shu-guang, Chen Su-huan, Ma Kai . Interval optimization of static analysis for structures with interval parameters[J]. 吉林大学学报(工学版), 2007, 37(05): 1220 -1224 .
[7] ZHANG Yan,ZHONG Shi-sheng,LI Jiang . Extension methods in casebased reasoning and applications[J]. 吉林大学学报(工学版), 2009, 39(02): 424 -0429 .
[8] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1354 -1358 .
[9] Zhang Yu-ting,Liao Jian-xin,Liu Yan,Zhang Tie-ying. Mechanism of integration between PIM and VPMN[J]. 吉林大学学报(工学版), 2006, 36(04): 554 -559 .
[10] Peng Yong,Sun Li-jun,Wang Yuan-qing,Shi Yong-jiu . Application of digital image processing in evaluating
homogeneity of asphalt mixture
[J]. 吉林大学学报(工学版), 2007, 37(02): 334 -0337 .