Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (5): 1689-1695.doi: 10.13229/j.cnki.jdxbgxb20180819

Previous Articles    

An improved algorithm for combination of DV-HOP and RSSI

Wen-jun LI1(),Qiang HUA1,Li-dong TAN1(),Yue SUN2   

  1. 1. College of Transportation, Jilin University, Changchun 130022, China
    2. College of Communication Engineering, Jilin University, Changchun 130022, China
  • Received:2018-08-05 Online:2019-09-01 Published:2019-09-11
  • Contact: Li-dong TAN E-mail:594631214@qq.com;tanld@jlu.edu.cn

Abstract:

The DV-Hop algorithm has low positioning accuracy and the Received Signal Strength Indicator (RSSI) algorithm is greatly affected by environmental factors, which lead to the generation of estimation error. To overcome these weaknesses and improve positioning accuracy and robustness, an improved algorithm combining DV-HOP and RSSI (DV-HOP-RSSI) is presented in this paper. The core ideas of the DV-HOP-RSSI algorithm are as follows. First, the single hidden layer feedforward neural network is used to obtain the trained network model instead of network topology, to achieve complete topology of the training set. Then the distance between unknown nodes and anchor nodes is calculated using the DV-HOP-RSSI algorithm. Furthermore, the location information of unknown nodes can be obtained by entering this distance into a trained network model. The simulation experiments were carried out in MATLAB, and the results show that the DV-HOP-RSSI algorithm not only has small positioning error, but also has good positioning effect and certain anti-interference, compared with the traditional DV-HOP algorithm and the improved DV-HOP algorithm.

Key words: communication technology, feedforward neural network, DV-HOP algorithm, RSSI distance-measuring algorithm, improved algorithm, node localization

CLC Number: 

  • TN925

Fig.1

Structure of single-layer feed forward neural network"

Fig.2

Training network model"

Table 1

Simulation parameters"

项 目 数 值
区域/(m×m) 100×100
通信半径R/m 30
噪声的标准差 1,5,9,13,17
路径损耗指数 τ 4
传输功率 P t r /dB 0
路径损失功率 P l o s s ( d 0 ) /dB -55 d 0 = 1 ? m
条件收敛阈值 ε 10-4
RSSI数值 1,5,9,13,17
异常值比例/% 0,3,6,9,12,15,18
锚节点比例/% 10,20,30,40,50

Fig.3

Node random distribution"

Fig.4

Positioning error of convergence threshold under different conditions"

Table 2

Simulation parameters"

项 目 数 值
区域/(m×m) 100×100
通信半径/m 30
噪声的标准差 9

Fig.5

Positioning error of proportion of different anchor nodes"

Fig.6

RSSI value and positioning error diagram"

Fig.7

Positioning error of different noise standard deviation"

Table 3

Simulation parameters"

项 目 数值
锚节点所占比例/% 30
异常节点所占比例/% 0,3,6,9,12,15,18
RSSI数值 11
噪声的标准差 2

Fig.8

Positioning error of different proportions of abnormal nodes"

Fig.9

Comparison graph between actual unknown point and unknown point calculated by improved algorithm"

1 朱敏, 刘昊霖, 张志宏, 等 . 一种基于DV-HOP改进的无线传感器网络定位算法[J]. 工程科学与技术, 2012, 44(1): 93-98.
Zhu Min , Liu Hao-lin , Zhang Zhi-hong , et al . An improved wireless sensor network location algorithm based on DV-HOP[J]. Science Technology and Engineering, 2012, 44(1): 93-98.
2 刘玉恒, 蒲菊华, 赫阳, 等 . 无线传感器网络三维自身定位方法[J]. 北京航空航天大学学报, 2008, 34(6): 647-651.
Liu Yu-heng , Pu Ju-hua , He Yang , et al . Three-dimensional self-localization scheme for wireless sensor networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(6): 647-651.
3 丁锐, 钱志鸿, 王雪 . 基于TOA和DOA联合估计的UWB定位方法[J]. 电子与信息学报, 2010, 32(2): 313-317.
Ding Rui , Qian Zhi-hong , Wang Xue . UWB positioning system based on joint TOA and DOA estimation[J]. Journal of Electronics and Information Technology, 2010, 32(2): 313-317.
4 肖竹, 谭光华, 李仁发, 等 . 无线传感器网络中基于超宽带的TOA/AOA联合定位研究[J]. 计算机研究与发展, 2013, 50(3): 453-460.
Xiao Zhu , Tan Guang-hua , Li Ren-fa , et al . TOA/AOA hybrid localization research based on ultra-wideband in wireless sensor networks[J]. Journal of Computer Research and Development, 2013, 50(3): 453-460.
5 韩东升, 杨维, 刘洋, 等 . 煤矿井下基于RSSI的加权质心定位算法[J]. 煤炭学报, 2013, 38(3): 522-528.
Han Dong-sheng , Yang Wei , Liu Yang , et al . A weighted centroid localization algorithm based on received signal strength indicator for underground coal mine[J]. Journal of China Coal Society, 2013, 38(3): 522-528.
6 李娟, 刘禹, 钱志鸿, 等 . 基于双通信半径的传感器网络DV-HOP定位算法[J]. 吉林大学学报: 工学版, 2014, 44(2): 502-507.
Li Juan , Liu Yu , Qian Zhi-hong , et al . Improved DV-Hop localization algorithm based on two communication ranges for wireless sensor network[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(2): 502-507.
7 魏全瑞, 刘俊, 韩九强, 等 . 改进的无线传感器网络无偏距离估计与节点定位算法[J]. 西安交通大学学报, 2014, 48(6): 1-6.
Wei Quan-rui , Liu Jun , Han Jiu-qiang , et al . An improved DV-hop node localization algorithm based on unbiased estimation for wireless sensor networks[J]. Journal of Xi'an Jiao tong University, 2014, 48(6): 1-6.
8 詹杰, 刘宏立, 刘述刚, 等 . 基于RSSI的动态权重定位算法研究[J]. 电子学报, 2011, 39(1): 83-87.
Zhan Jie , Liu Hong-li , Liu Shu-gang , et al . The study of dynamic degree weighted centroid localization algorithm based on RSSI[J]. Acta Electronica Sinica, 2011, 39(1): 83-87.
9 王缓缓, 宫娜娜 . 基于距离区间概率加权的RSSI测距方法[J]. 电子科技大学学报, 2013, 42(6): 862-868.
Wang Huan-huan , Gong Na-na . RSSI ranging method based on the weighted distance interval probability[J]. Journal of University of Electronic Science and Technology of China, 2013, 42(6): 862-868.
10 张爱清, 叶新荣, 胡海峰, 等 . 基于RSSI每跳分级和跳距修正的DV-HOP改进算法[J]. 仪器仪表学报, 2012, 33(11): 2552-2559.
Zhang Ai-qing , Ye Xin-rong , Hu Hai-feng , et al . Improved DV-HOP positioning algorithm based on one-hop subdivision and average hopping distance modification[J]. Chinese Journal of Scientific Instrument, 2012, 33(11): 2552-2559.
11 Erdogmus D , Principe J C . An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems[J]. IEEE Transactions on Signal Processing, 2002, 50(7): 1780-1786.
12 Santamaria I , Pokharel P P , Principe J C . Generalized correlation function: definition, properties, and application to blind equalization[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2187-2197.
13 Liu W , Pokharel P P , Principe J C . Correntropy: properties and applications in non-gaussian signal processing[J]. IEEE Transactions on Signal Processing, 2007, 55(11): 5286-5298.
14 Chuang P J , Jiang Y J . Effective neural network-based node localization scheme for wireless sensor networks[J]. Wireless Sensor Systems, 2014, 4(2): 97-103.
15 Xu Y , Luo X , Wang W , et al . Efficient DV-HOP localization for wireless cyber-physical social sensing system: a correntropy-based neural network learning scheme[J]. Sensors, 2017, 17(1): 119-135.
[1] Yong LIU,Fang⁃shun DENG,Xiao⁃lin LIU,Si⁃jie MIN,Peng WANG. Frequency estimation of minimum shift keying signal based on dual chaotic oscillator [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1357-1362.
[2] Hong⁃zhi WANG,Fang⁃da JIANG,Ming⁃yue ZHOU. Power allocation of cognitive radio system based on genetic particle swarm optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1363-1368.
[3] ZHOU Yan-guo,ZHANG Hai-lin,CHEN Rui-rui,ZHOU Tao. Two-level game approach based resource allocation scheme in cooperative networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1879-1886.
[4] SUN Xiao-ying, HU Ze-zheng, YANG Jin-peng. Assessment method of electromagnetic pulse sensitivity of vehicle engine system based on hierarchical Bayesian networks [J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[5] DONG Ying, CUI Meng-yao, WU Hao, WANG Yu-hou. Clustering wireless rechargeable sensor networks charging schedule based on energy prediction [J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[6] MOU Zong-lei, SONG Ping, ZHAI Ya-yu, CHEN Xiao-xiao. High accuracy measurement method for synchronous triggering pulse transmission delay in distributed test system [J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[7] DING Ning, CHANG Yu-chun, ZHAO Jian-bo, WANG Chao, YANG Xiao-tian. High-speed CMOS image sensor data acquisition system based on USB 3.0 [J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[8] GUAN Ji-shi, SHI Yao-wu, QIU Jian-wen, SHAN Ze-biao, SHI Hong-wei. New algorithm to estimate characteristic exponent of α-stable distribution [J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[9] CHEN Rui-rui, ZHANG Hai-lin. Performance analysis of 3D millimeter wave communications [J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[10] ZHANG Chao-yi, LI Jin-hai, YAN Yue-peng. Improved Tong detection algorithm with double thresholds [J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[11] SUN Xiao-ying, WANG Zhen, YANG Jin-peng, HU Ze-zheng, CHEN Jian. Electromagnetic susceptibility assessment of electronic throttle based on Bayesian network [J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[12] WU Wei, WANG Shi-gang, ZHAO Yan, WEI Jian, ZHONG Cheng. Hexagonal elemental image array generation [J]. 吉林大学学报(工学版), 2018, 48(1): 290-294.
[13] LI Wei, LI Ya-jie. Satisfactory integrated design between failure accommodation and communication for non-uniform transmission networked control system under discrete event-triggered communication scheme [J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
[14] YUAN Jian-guo, ZHANG Xi-ruo, QIU Piao-yu, WANG Yong, PANG Yu, LIN Jin-zhao. Non-iterative phase noise suppression algorithm utilizing cyclic prefix in OFDM systems [J]. 吉林大学学报(工学版), 2018, 48(1): 295-300.
[15] WANG Jin-peng, CAO Fan, HE Xiao-yang, ZOU Nian-yu. Multi carrier system joint receiving method based on MAI and ICI [J]. 吉林大学学报(工学版), 2018, 48(1): 301-305.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!