Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (4): 1363-1368.doi: 10.13229/j.cnki.jdxbgxb20180844

Previous Articles    

Power allocation of cognitive radio system based on genetic particle swarm optimization

Hong⁃zhi WANG(),Fang⁃da JIANG,Ming⁃yue ZHOU   

  1. School of Computer Science and Engineering, Changchun University of Technology, Changchun130012, China
  • Received:2018-07-03 Online:2019-07-01 Published:2019-07-16

Abstract:

Considering the requirements of the interference power threshold for the primary users and the signal to interference plus noise ratio (SINR) for the secondary users, this paper proposes a particle swarm optimization based on genetic thought, namely genetic particle swarm optimization (GPSO). This scheme studies the issue of minimizing secondary users' transmit power in the CRN. The GPSO algorithm introduces selection, crossover, and mutation operations in the fitness value calculation, speed update, and location update phases. Compared with the Lagrange multiplier method and PSO, the GPSO algorithm reduces the transmit power and obtains a higher SINR.

Key words: communication technology, cognitive radio networks, power control, particle swarm optimization(PSO) algorithm, genetic algorithm

CLC Number: 

  • TN929.5

Fig.1

Flow chart of proposed algorithm"

Fig.2

Relationship between iterations and secondary users′ transmission power"

Fig.3

Relationship between iterations and secondary users′ SINR"

Fig.4

Relationship between iterations and secondary users′ transmission rate"

1 Chen S , Alemseged Y D , Ha N T , et al . Power control of cognitive radio system in rayleigh fading[C]∥IEEE Global Telecommunications Conference, Honolulu, HI, USA, 2009: 319⁃324.
2 Haykin S . Cognitive radio: brain⁃empowered wireless communications[J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201⁃220.
3 Qu Y , Wang M , Hu J . A new energy⁃efficient scheduling algorithm based on particle swarm optimization for cognitive radio networks[C]∥Proceedings of IEEE International Conference on Signal Processing, Communications and Computing, Guilin, China, 2014: 467⁃472.
4 Gkionis G , Sgora A , Vergados D D , et al . An effective spectrum handoff scheme for cognitive radio ad hoc networks[C]∥Proceedings of Wireless Telecommunications Symposium, Chicago, IL, 2017: 1⁃7.
5 Mahdi A H , Mohanan J , Kalil M A , et al . Adaptive discrete particle swarm optimization for cognitive radios[C]∥Proceedings of IEEE International Conference on Communications, Ottawa, Canada, 2012: 6550⁃6554.
6 Zhao Z , Xu S , Zheng S , et al . Cognitive radio adaptation using particle swarm optimization[J]. Wireless Communications and Mobile Computing, 2009, 9(7): 875⁃881.
7 Sun J , Palade V , Wu X J , et al . Solving the power economic dispatch problem with generator constraints by random drift particle swarm optimization[J]. IEEE Transactions on Industrial Informatics, 2013, 10(1): 222⁃232.
8 Gesbert D , Hanly S , Huang H , et al . Multi⁃cell mimo cooperative networks: a new look at interference[J]. IEEE Journal on Selected Areas in Communications, 2010, 28(9): 1380⁃1408.
9 Zhang Q , Wan P , Wang Y , et al . A spectrum allocation method based on random drift swarm optimization algorithm[C]∥Proceedings of International Conference on Communication Software and Networks, Guangzhou, China, 2017: 289⁃295.
10 栾磊, 赵晓晖, 徐勇军 . 面向区域的认知无线电系统的频谱感知模型[J]. 吉林大学学报:工学版, 2016, 46(4): 1304⁃1312.
Luan Lei , Zhao Xiao⁃hui , Xu Yong⁃jun . Spectrum sensing model of region⁃oriented cognitive radio system[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(4): 1304⁃1312.
11 Zhang H , Nie Y , Cheng J , et al . Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing[J]. IEEE Transactions on Wireless Communications, 2017, 16(2): 730⁃743.
12 Zhang E , Chen Q . Multi⁃objective reliability redundancy allocation in an interval environment using particle swarm optimization[J]. Reliability Engineering and System Safety, 2016, 145:83⁃92.
13 Wang B , Wang S , Zhou X Z , et al .Two⁃stage multi⁃objective unit commitment optimization under hybrid uncertainties[J]. IEEE Transactions on Power Systems, 2016, 31(3): 2266⁃2277.
14 Ratnaweera A , Halgamuge S K , Watson H C . Self⁃organizing Hierarchical Particle Swarm Optimizer with Time⁃varying Acceleration Coefficients[M]. New York: IEEE Press, 2004.
15 Tiwari P , Saha S . Co⁃channel interference constrained spectrum allocation with simultaneous power and network capacity optimization using PSO in cognitive radio network[C]∥Proceedings of IEEE International Conference on Advanced Networks and Telecommunications Systems, Kolkata, India, 2016:1⁃3.
16 Tuan P V , Koo I . Robust weighted sum harvested energy maximization for SWIPT cognitive radio networks based on particle swarm optimization[J]. Sensors, 2017, 17(10): 2275.
17 Lobiyal D K , Katti C P , Giri A K . Parameter value optimization of Ad⁃hoc on demand multipath distance vector routing using particle swarm optimization[J]. Procedia Computer Science, 2015, 46: 151⁃158.
18 Starke S , Hendrich N , Magg S , et al . An efficient hybridization of genetic algorithms and particle swarm optimization for inverse kinematics[C]∥Proceedings of IEEE International Conference on Robotics and Biomimetics, Qingdao, China, 2017: 1782⁃1789.
[1] Yong LIU,Fang⁃shun DENG,Xiao⁃lin LIU,Si⁃jie MIN,Peng WANG. Frequency estimation of minimum shift keying signal based on dual chaotic oscillator [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1357-1362.
[2] WU Wei-nan,CUI Nai-gang,GUO Ji-feng,ZHAO Yang-yang. Distributed integrated method for mission planning of heterogeneous unmanned aerial vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1827-1837.
[3] ZHOU Yan-guo,ZHANG Hai-lin,CHEN Rui-rui,ZHOU Tao. Two-level game approach based resource allocation scheme in cooperative networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1879-1886.
[4] JIAO Yu-ling, ZHANG Peng, TIAN Guang-dong, XING Xiao-cui, ZOU Lian-hui. Slotting optimization of automated warehouse based on multi-population GA [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1398-1404.
[5] SUN Xiao-ying, HU Ze-zheng, YANG Jin-peng. Assessment method of electromagnetic pulse sensitivity of vehicle engine system based on hierarchical Bayesian networks [J]. 吉林大学学报(工学版), 2018, 48(4): 1254-1264.
[6] DONG Ying, CUI Meng-yao, WU Hao, WANG Yu-hou. Clustering wireless rechargeable sensor networks charging schedule based on energy prediction [J]. 吉林大学学报(工学版), 2018, 48(4): 1265-1273.
[7] MOU Zong-lei, SONG Ping, ZHAI Ya-yu, CHEN Xiao-xiao. High accuracy measurement method for synchronous triggering pulse transmission delay in distributed test system [J]. 吉林大学学报(工学版), 2018, 48(4): 1274-1281.
[8] DING Ning, CHANG Yu-chun, ZHAO Jian-bo, WANG Chao, YANG Xiao-tian. High-speed CMOS image sensor data acquisition system based on USB 3.0 [J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[9] LI Qi-liang, CAO Guan-ning, LI Xuan, YANG Zhi-gang, ZHONG Li-yuan. Multi-parameters aerodynamic optimization of sedan [J]. 吉林大学学报(工学版), 2018, 48(3): 670-676.
[10] CHEN Rui-rui, ZHANG Hai-lin. Performance analysis of 3D millimeter wave communications [J]. 吉林大学学报(工学版), 2018, 48(2): 605-609.
[11] ZHANG Chao-yi, LI Jin-hai, YAN Yue-peng. Improved Tong detection algorithm with double thresholds [J]. 吉林大学学报(工学版), 2018, 48(2): 610-617.
[12] GUAN Ji-shi, SHI Yao-wu, QIU Jian-wen, SHAN Ze-biao, SHI Hong-wei. New algorithm to estimate characteristic exponent of α-stable distribution [J]. 吉林大学学报(工学版), 2018, 48(2): 618-624.
[13] SUN Wen, WANG Qing-nian, WANG Jun-nian. Yaw-moment control of motorized vehicle for energy conservation during cornering [J]. 吉林大学学报(工学版), 2018, 48(1): 11-19.
[14] HU Yun-feng, WANG Chang-yong, YU Shu-you, SUN Peng-yuan, CHEN Hong. Structure parameters optimization of common rail system for gasoline direct injection engine [J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[15] LI Wei, LI Ya-jie. Satisfactory integrated design between failure accommodation and communication for non-uniform transmission networked control system under discrete event-triggered communication scheme [J]. 吉林大学学报(工学版), 2018, 48(1): 245-258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!