Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (4): 1476-1481.doi: 10.13229/j.cnki.jdxbgxb20200398

Previous Articles    

CMOS array imaging method of coordinated multichannel based on drift angle adjusting mechanism

Liu ZHANG(),Liang SHEN,Wen-hua WANG(),He LIU   

  1. College of Instrumentation & Electrical Engineering,Jilin University,Changchun 130012,China
  • Received:2020-06-08 Online:2021-07-01 Published:2021-07-14
  • Contact: Wen-hua WANG E-mail:zhangliu@jlu.edu.cn;wangwh900@jlu.edu.cn

Abstract:

Although the existing method of rotation of each sensor can improve the matching accuracy of the drift angle,it results in the discontinuity of the image synthesized by the detector with optical butting on the focal plane. In order to solve the above problems, an electronic imaging system based on CMOS image sensor GMAX3265 and FPGA is designed. The system uses the windowing mode of CMOS image sensor to Real-time clipping the nonlinear part of the image synthesized by adjacent detectors, thus forming a continuous image strip. Firstly, the difference between the traditional drift angle compensation method and the slice rotation drift angle compensation method is compared and analyzed when the detector adopts optical butting. Secondly, the number of cutting rows is calculated and the cutting precision is analyzed. Finally, the electronic system is completed through the overall system design and driving timing design. The experimental results show that when the rotation angle difference between adjacent detectors is 0.1 °, the ratio of error pixels to total pixels is 0.1165%, which does not lose too much image and improves image continuity.

Key words: rotation of each sensor, optical butting, discontinuity, CMOS image sensor, windowing

CLC Number: 

  • V443.5

Fig.1

Image generated by traditional method of adjusting drift angle"

Fig.2

Image generated by new method of adjusting drift angle"

Fig.3

Geometric relationship of adjacent detectors"

Table 1

Accuracy of the CORDIC algorithm"

输入值

/(°)

sinθcosθ
FPGA仿真值MATLAB计算值误差值FPGA仿真值MATLAB计算值误差值
0.50.999 962 3300.999 961 9234.067 98e-070.008 666 9920.008 726 5355.954 31e-05
10.999 847 4120.999 847 6952.830 39e-070.017 455 1010.017 452 4072.694 10e-06
1.50.999 658 5850.999 657 3251.259 62e-060.026 119 9470.026 176 9495.700 11e-05
20.999 390 6020.999 390 8272.249 09e-070.034 904 9570.034 899 4975.460 15e-06
2.50.999 050 3790.999 048 2222.157 20e-060.043 565 2730.043 619 3875.411 38e-05
30.998 628 8550.998 629 5356.799 80e-070.052 344 3220.052 335 9578.365 52e-06
3.50.998 137 7120.998 134 7982.914 07e-060.060 997 2480.061 048 5405.129 20e-05

Fig.4

System architecture diagram"

Fig.5

Driving timing for SPI"

Fig.6

Driving timing for algorithm of CORDIC"

Fig.7

Mosaic image before windowing"

Fig.8

Mosaic image after windowing"

1 任三孩,范翔,张帆,等. 空间光学平台调偏流分析[J]. 飞行器测控学报, 2017, 36(4): 281-286.
Ren San-hai, Fan Xiang, Zhang Fan,et al. Analysis of Drift Adjusting by a Space Optical Camera Platform[J]. Journal of Spacecraft TT&C Technology, 2017, 36(4): 281-286.
2 温渊,张大伟. 品字形拼接探测器偏流角补偿研究[J]. 上海航天, 2017, 34(2): 127-133.
Wen Yuan, Zhang Da-wei. Drift angle compensation study of interleaving assembly focal plane[J]. Aerospace Shanghai, 2017, 34(2): 127-133.
3 吴俊,李娜,许云飞,等.超敏捷卫星动中成像模式下成像质量研究[J]. 光学与光电技术, 2018, 16(5): 83-89.
Wu Jun, Li Na, Xu Yun-fei, et al. Research on imaging quality of super agile satellite with dynamic imaging mode[J]. Optics & Optoelectronic Technology, 2018, 16(5):83-89.
4 李永昌,金龙旭,李国宁,等. 宽视场遥感相机像移速度模型及补偿策略[J]. 武汉大学学报:信息科学版, 2018, 43(8): 1278-1286.
Li Yong-chang, Jin Long-xu, Li Guo-ning, et al. Image motion velocity model and compensation strategy of wide-field remote sensing camera[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1278-1286.
5 李永昌. 敏捷卫星相机像移补偿关键技术研究[D]. 长春:长春光学精密机械与物理研究所, 2016.
Li Yong-chang. Study on key technology of image motion compensationof agile satellite camera[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China, 2016.
6 李伟雄. 高分辨率空间相机敏捷成像的像移补偿方法研究[D]. 长春:长春光学精密机械与物理研究所, 2012.
Li Wei-xiong. Research on method of image motion compensation of high resolution space cameras' collecting scene agilely[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China, 2012.
7 谷松,徐振. 新型空间相机偏流角调整方法[J]. 红外与激光工程, 2014, 43(): 209-213.
Gu Song, Xu Zhen. New drift adjusting method of space camera[J]. Infrared and Laser Engineering, 2014, 43(Sup.1): 209-213.
8 刘妍妍. 大视场长焦平面TDI CCD拼接相机最优成像技术研究[D]. 长春:吉林大学仪器科学与电气工程学院, 2016.
Liu Yan-yan. Research on optimal imaging technology of multi-TDICCD assembling camera with large field and long focal plane[D]. Changchun:College of Instrument Science and Electrical Engineering, Jilin University, 2016.
9 褚备,李富强,常君磊. 光学拼接焦平面重叠像元数计算[J]. 光电工程, 2016, 43(12): 99-103.
Chu Bei, Li Fu-qiang, Chang Jun-lei. Calculation of overlapping pixels in focal plane based on optical butting[J]. Opto-Electronic Engineering, 2016, 43(12): 99-103.
10 王伟,李林. 反射式光学像面拼接方法研究[J]. 光子学报, 2014, 43(3): 80-86.
Wang Wei, Li Lin. Reflector mirror based optical butting[J]. Acta Photonica Sinica, 2014, 43(3): 80-86.
11 林雅宾. 基于仿视网膜分布CMOS探测器的实时图像消旋技术研究[D]. 北京:北京理工大学光电学院, 2016.
Lin Ya-bin. Research on real-time image rotation-elimination based on a retina-like sensor[D]. Beijing: School of Optics and Photorics, Beijing Institute of Technology, 2016.
12 马精格. CCD与CMOS图像传感器的现状及发展趋势[J]. 电子技术与软件工程, 2017,6(13): 103.
Ma Jing-ge. Current situation and development trendency of CCD and CMOS image sensors[J]. Electronic Technology & Software Engineering, 2017,6(13): 103.
13 谢玉婷,安源,贾学志,等. 宽幅相机一体化焦面调整机构设计与精度分析[J]. 机械设计与制造, 2018, 55(3): 212-215.
Xie Yu-ting, An Yuan, Jia Xue-zhi, et al. Design and accuracy analysis of integrated adjusting mechanism for the focal plane in wide camera[J]. Machinery Design & Manufacture, 2018,55(3): 212-215.
14 陈彦来. 基于CORDIC算法的直角坐标与球面坐标变换电路的FPGA实现[J]. 舰船电子对抗, 2011, 34(1): 72-75, 90.
Chen Yan-lai. FPGA realization of transformation circuit between rectangular coordinate and spherical coordinate based on CORDIC algorithm[J]. Shipboard Electronic Countermeasure, 2011, 34(1): 72-75, 90.
15 张伟,张安堂,肖宇. 基于坐标旋转数字计算方法的三维坐标变换[J]. 探测与控制学报, 2011, 33(2): 73-76, 80.
Zhang Wei, Zhang An-tang, Xiao Yu. CORDIC based three-dimensional coordinate transform[J]. Journal of Detection & Control, 2011, 33(2): 73-76, 80.
[1] DING Ning, CHANG Yu-chun, ZHAO Jian-bo, WANG Chao, YANG Xiao-tian. High-speed CMOS image sensor data acquisition system based on USB 3.0 [J]. 吉林大学学报(工学版), 2018, 48(4): 1298-1304.
[2] CHEN Ming, CHEN Jie, XIAO Jing-bo. Design of pipeline analog digital converter used for CMOS image sensors [J]. 吉林大学学报(工学版), 2018, 48(3): 968-976.
[3] LIN Hong-bo, LI Yue, ZHANG Chao, MA Hai-tao. Based on fuzzy multi-level time-frequency peak filtering attenuation of seismic random noise [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 410-413.
[4] WANG Hong-xing, WANG Hong-li, MAO Zhong-yang. Analysis of EBPSK demodulation algorithm based on time-frequency distribution [J]. 吉林大学学报(工学版), 2011, 41(05): 1491-1496.
[5] Zhou Jin, Yao Suying, Xu Jiangtao, Hu Yanxiang. Novel selective reset CMOS image sensor circuit structure [J]. 吉林大学学报(工学版), 2006, 36(02): 227-0231.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!