Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (5): 1651-1663.doi: 10.13229/j.cnki.jdxbgxb20200401

Previous Articles    

Settings of guiding markings for left⁃turning vehicles based on lane selection and vehicle trajectory

Rong-han YAO1(),Wen-yan QI1,Liu-jie ZHENG1,Da-yi QU1,2()   

  1. 1.School of Transportation and Logistics,Dalian University of Technology,Dalian 116024,China
    2.School of Mechanical & Automotive Engineering,Qingdao University of Technology,Qingdao 266520,China
  • Received:2020-06-08 Online:2021-09-01 Published:2021-09-16
  • Contact: Da-yi QU E-mail:cyanyrh@dlut.edu.cn;dyqu@263.net

Abstract:

To enhance the safety and efficiency of traffic flow operations at an intersection using left-turning guiding markings, the lane selection behaviors and vehicle trajectory characteristics of left-turning vehicles from an approach to an exit are analyzed. According to the random utility theory, the exit lane selection models for left-turning vehicles are formulated. Using the circular and horizontal curves, the vehicle trajectory models for left-turning vehicles are described. Two kinds of left-turning guiding markings and three types of guiding modes for left-turning traffic flow are proposed. Traffic flow simulation models are constructed, six design scenarios are compared, and the impacts of the percentages of vehicle types on the guiding effects are analyzed. The outcomes reveal that: the approach lane, self-type, turning angle and the type of the preceding vehicle in the same lane for the target vehicle significantly impact on the exit lane selection behaviors of left-turning vehicles; the circular and horizontal curves are both suitable for regular and irregular intersections; the settings of the horizontal curves for guiding left-turning vehicles can not only standardize the order of traffic flow operations but also improve the performances of traffic flow operations; it is not suitable to install redundant guiding markings in order to balance traffic efficiency and the number of stops; these conclusions are not impacted by the percentages of vehicle types. At intersections on urban roads, it is suggested that the horizontal curves should be used to install the guiding markings for left-turning traffic flow. When the number of left-turning lanes is more than one, it is recommended that two left-turning guiding markings should be installed at least.

Key words: urban road, left-turning guiding markings, lane selection behavior, vehicle trajectory, traffic simulation

CLC Number: 

  • U491

Fig.1

Layout for selected intersections"

Table 1

Explanatory variables in MNL lane selection model"

变量名称变量符号解释
哑元变量vin{0,1},?n{1,2,3}

车辆i选择出口车道nvin=1;反之,vin=0

对于进口车道,1=内侧车道;2=外侧车道。

对于出口车道,1=内侧车道;2=中间车道;3=外侧车道。

对于车型,0=无;1=小型车;1.5=中型车;2.5=大型车。

交叉口A,Rn=1.34

交叉口B,Rn=1.83

目标车辆进口车道LAin{1,2},?n{1,2,3}
目标车辆自身车型TTin{1,1.5,2.5},?n{1,2,3}
目标车辆前车车型TFin{0,1,1.5,2.5},?n{1,2,3}
目标车辆前车所选出口车道LFEin{1,2,3},?n{1,2,3}
目标车辆相对速度VTin,?n{1,2,3}
目标车辆与前车相对速度差VFin,?n{1,2,3}
左转车辆转弯弧度Rn,?n{1,2,3}

Table 2

Results of parameter calibration and t test"

属性解释变量参数值t检验值
内侧车道哑元变量14.1679.402***
目标车辆所在进口车道-4.392-11.625***
目标车辆自身车型-1.017-2.312**
目标车辆前车车型0.6631.754*
目标车辆前车所选出口车道-1.094-1.271
目标车辆的相对速度-1.237-1.657*
目标车辆与其前车的相对速度差-0.751-3.433**
左转车辆转弯弧度-2.803-5.028***
中间车道哑元变量7.3105.956***
目标车辆所在进口车道-1.805-6.011***
目标车辆自身车型-0.842-3.223***
目标车辆前车车型0.5061.926*
目标车辆前车所选出口车道-0.126-0.192
目标车辆的相对速度-0.834-1.438
目标车辆与其前车的相对速度差-0.468-2.834***
左转车辆转弯弧度-1.364-3.107***

Fig.2

Left-turning vehicle distribution on exit lanes"

Fig.3

Trajectory curves of partial left-turning vehicles traversing an intersection"

Fig.4

Curves of curvature change of left-turning vehicle trajectory"

Table 3

Results of parameter calibration for circular curve trajectory model"

交叉口进口车道起始处直线长度/m圆曲线长度/m圆曲线半径/m终止处直线长度/mMR2
黄浦路-凌水路内侧车道9.0023.9415.150.4011.9230.752
外侧车道9.1421.5213.070.1410.3010.702
五一路-西南路内侧车道4.7161.3746.9320.374.7950.971
外侧车道6.2562.5649.1219.654.3420.977

Table 4

Results of parameter calibration for horizontal curve trajectory model"

交叉口进口车道起始处直线长度/m直线与圆曲线间缓和曲线长度/m圆曲线 长度/m圆曲线 半径/m圆曲线与直线间缓和曲线长度/m终止处直线长度/mMR2
黄浦路-凌水路内侧车道9.0011.164.769.018.020.404.7000.953
外侧车道9.149.665.307.476.560.144.8490.939
五一路-西南路内侧车道4.7120.498.1124.1932.7720.370.4951.000
外侧车道6.2519.967.7126.1934.8919.650.4161.000

Table 5

Parameters of left-turning guiding markings using circular curves"

交叉口导向线位置起始处直线长度/m圆曲线长度/m圆曲线半径/m终止处直线长度/m
黄浦路-凌水路内侧9.9623.3113.007.82
中间9.4030.5217.007.68
外侧8.8537.6521.007.60
五一路-西南路内侧4.7443.5733.250.00
中间4.5648.1836.750.00
外侧4.5652.7840.250.00

Fig.5

Settings of left-turning guiding markings using circular curves"

Table 6

Parameters of left-turning guiding markings using horizontal curves"

交叉口导向线位置起始处直线长度/m直线与圆曲线间缓和曲线长度/m圆曲线长度/m圆曲线半径/m圆曲线与直线间缓和曲线长度/m终止处直线长度/m
黄浦路-凌水路内侧9.9610.015.436.259.247.82
中间9.4012.718.609.7510.737.68
外侧8.8515.2211.6713.2512.117.60
五一路-西南路内侧5.0015.9413.5518.0013.882.00
中间5.0016.4117.2221.5014.342.00
外侧5.0016.8520.9725.0014.752.00

Table 7

Distribution of left-turning vehicles on exit lanes using different modes of left-turning guiding markings"

交叉口进口车道无引导方式内侧引导方式双左转引导方式
组合1组合2组合3组合4组合5组合6组合7
黄浦路-凌水路内侧车道8∶28∶27∶37∶31∶01∶01∶0
外侧车道4∶65∶54∶65∶54∶65∶50∶1
五一路-西南路内侧车道6∶46∶45∶55∶51∶01∶01∶0
外侧车道3∶74∶63∶74∶63∶74∶60∶1

Table 8

Performance indices of left-turning traffic flow operations using different modes of left-turning guiding markings"

性能指标导向线线型进口车道无引导方式内侧引导方式双左转引导方式
组合1组合2组合3组合4组合5组合6组合7
通过车辆数/veh圆曲线A-1195.00198.00195.00198.00195.00198.00179.00
A-2189.00186.00189.00186.00189.00186.00174.00
B-1426.00414.00405.00403.00452.00452.00452.00
B-2431.00422.00407.00423.00465.00465.00465.00
平曲线A-1195.00198.00195.00198.00195.00198.00195.00
A-2189.00186.00189.00186.00189.00186.00190.00
B-1428.00420.00410.00411.00452.00452.00452.00
B-2440.00430.00419.00426.00465.00465.00465.00
车均延误/(s·veh-1圆曲线A-119.4219.5119.4219.5019.3919.6118.89
A-219.8519.6619.8519.6719.8519.6518.70
B-149.4251.6252.8453.4819.7619.7619.80
B-223.0223.3523.7722.5719.1919.1919.22
平曲线A-118.9618.9719.0018.9718.9719.0818.90
A-218.7018.5618.7118.5718.6918.5418.52
B-148.1849.6851.7251.7119.4019.4019.44
B-221.2921.0921.2420.9418.1918.1918.24
车均停车次数圆曲线A-10.700.720.700.720.700.720.69
A-20.700.700.700.700.700.700.68
B-11.151.241.241.250.520.520.52
B-20.520.520.530.510.500.500.50
平曲线A-10.690.700.700.700.690.700.69
A-20.660.660.660.660.660.660.67
B-11.251.281.321.340.510.510.51
B-20.460.470.470.460.450.450.45
平均排队长度/m圆曲线A-16.376.606.376.606.356.656.55
A-26.776.416.776.416.776.416.66
B-1211.56252.51291.07282.1920.2320.2320.27
B-2250.65270.16309.58297.4019.6019.6019.64
平曲线A-16.426.666.446.666.426.726.55
A-26.796.476.796.486.796.476.61
B-1198.44237.51258.31273.4320.2320.2320.27
B-2227.86268.96286.14282.8719.6019.6019.64
行程时间/s圆曲线A-126.6326.7226.6326.7226.5926.8026.05
A-227.0726.8727.0726.8827.0526.8525.93
B-156.3658.5659.7960.4226.6826.6826.72
B-230.0130.3330.7529.5526.1726.1626.14
平曲线A-126.1826.2026.2226.2026.1926.3026.10
A-225.9425.7925.9525.8025.9225.7625.73
B-155.1156.6158.6558.6426.3226.3226.36
B-228.2628.0528.2127.9025.1525.1525.16

Table 9

Performance indices of left-turning traffic flow operations under condition of different percentages of vehicle types"

车辆组成引导方式导向线线型进口 车道通过车辆数 /veh车均延误 /(s·veh-1车均停车次数平均排队 长度/m行程 时间/s
小、中、大车型比例为7∶2∶1无引导方式平曲线B-1359.6046.251.22341.0553.93
B-2374.0020.710.42343.9428.46
圆曲线B-1350.8049.801.26338.9057.50
B-2362.4022.800.48341.9230.54
内侧引导方式平曲线B-1453.6019.560.4349.1127.21
B-2465.8017.620.3645.5325.34
圆曲线B-1451.2020.310.4655.8927.97
B-2463.0019.100.4154.4626.83
双左转引导方式平曲线B-1438.6020.560.41205.6828.58
B-2446.0018.560.35212.5826.62
圆曲线B-1451.8020.550.4662.8228.22
B-2463.0019.470.4158.8627.14
小、中、大车型比例为5∶3∶2无引导方式平曲线B-1316.6045.771.24335.1354.07
B-2327.8020.760.42346.4929.05
圆曲线B-1314.6048.341.27340.7856.61
B-2329.4022.020.46345.4630.41
内侧引导方式平曲线B-1404.6020.680.41325.8128.97
B-2412.2018.750.37328.9527.09
圆曲线B-1400.8021.730.44331.3929.96
B-2404.4020.870.41318.6229.27
双左转引导方式平曲线B-1407.0021.110.43327.1229.36
B-2413.0018.820.37334.0227.11
圆曲线B-1407.0021.050.43323.2629.31
B-2412.0020.270.40332.1828.55
小、中、大车型比例为4∶3∶3无引导方式平曲线B-1298.0046.251.25345.0154.95
B-2310.6021.280.42345.4430.01
圆曲线B-1294.4047.031.23344.2055.74
B-2308.2021.870.44342.1630.68
内侧引导方式平曲线B-1374.4021.050.43334.6329.76
B-2382.0019.160.37335.7127.91
圆曲线B-1374.8021.930.44336.3030.59
B-2381.4020.550.41330.3029.32
双左转引导方式平曲线B-1368.8021.480.43334.2330.12
B-2376.2019.470.38338.2928.21
圆曲线B-1374.8021.480.44332.0530.12
B-2380.2020.480.41315.6629.19
1 Gipps P G. A model for the structure of lane-changing decisions [J]. Transportation Research Part B: Methodological, 1986, 20(5): 403-414.
2 Nevers B L, Rouphail N M. Field evaluation of lane selection strategies at signalized intersections[J]. Journal of Transportation Engineering, 2002, 128(3): 224-231.
3 Toledo T, Koutsopoulos H N, Ben-Akiva M. Integrated driving behavior modeling[J]. Transportation Research Part C: Emerging Technologies, 2007, 15(2): 96-112.
4 徐慧智, 程国柱, 裴玉龙. 车道变换行为对道路通行能力影响的研究[J]. 中国科技论文在线, 2010, 5(10): 749-753.
Xu Hui-zhi, Cheng Guo-zhu, Pei Yu-long. Study on effect of lane-changing behavioral characteristic to capacity[J]. Sciencepaper Online, 2010, 5(10): 749-753.
5 李志慧, 汪昆维, 宋现敏, 等. 基于车道选择特性的环形交叉口行程时间预测[J]. 吉林大学学报: 工学版, 2017, 47(5): 1411-1419.
Li Zhi-hui, Wang Kun-wei, Song Xian-min, et al. Roundabout travel time prediction based on characteristics of lane choosing[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(5): 1411-1419.
6 周红媚, 孙叶, 徐秀娟. 基于随机效用理论的城市道路车辆自由换道行为研究[J]. 交通运输研究, 2017, 3(2): 9-16.
Zhou Hong-mei, Sun Ye, Xu Xiu-juan. Behavior of discretionary lane changing on urban streets based on random utility theory[J]. Transport Research, 2017, 3(2): 9-16.
7 Sando T, Ren M. Influence of intersection geometrics on the operation of triple left-turn lanes[J]. Journal of Transportation Engineering, 2009, 135(5): 253-259.
8 Yun M, Ji J, Chen Z. Lane change behavior at weaving section of signalized intersection upstream[C]∥Proceedings of the Fourth International Conference on Transportation Engineering. Reston VA: American Society of Civil Engineers. 2013: 1229-1234.
9 曹弋, 杨忠振, 左忠义, 等. 绿灯倒计时信号对驾驶行为的影响[J]. 中国安全科学学报, 2015, 25(2): 77-82.
Cao Yi, Yang Zhong-zhen, Zuo Zhong-yi, et al. Influence of countdown signal of green light on driving behavior[J]. China Safety Science Journal, 2015, 25(2): 77-82.
10 Choudhury C F, Ben-Akiva M E. A lane selection model for urban intersections[J]. Transportation Research Record: Journal of the Transportation Research Board, 2008, 2088: 167-176.
11 Peng J, Guo Y, Fu R, et al. Multi-parameter prediction of drivers' lane-changing behaviour with neural network model[J]. Applied Ergonomics, 2015, 50: 207-217.
12 杨龙海, 罗沂, 徐洪. 基于GPS定位数据的高速公路换道特征分析与行为识别[J]. 北京交通大学学报, 2017, 41(3): 39-46.
Yang Long-hai, Luo Yi, Xu Hong. Analysis and recognition of highway lane-changing behavior characteristics based on GPS location data[J]. Journal of Beijing Jiaotong University, 2017, 41(3): 39-46.
13 裴玉龙, 张银. 车道变换期望运行轨迹仿真[J]. 交通信息与安全, 2008, 26(4): 68-71.
Pei Yu-long, Zhang Yin. Lane-changing virtual desire trajectory simulation[J]. Journal of Transport Information and Safety, 2008, 26(4): 68-71.
14 曲昭伟, 白乔文, 陈永恒, 等. 无专用左转相位十字形交叉口左转导向线计算模型[J]. 吉林大学学报: 工学版, 2017, 47(2): 414-419.
Qu Zhao-wei, Bai Qiao-wen, Chen Yong-heng, et al. Model of left-turn guide line at right-angled intersection with permitted left-turning phase[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(2): 414-419.
15 南春丽, 张生瑞, 严宝杰. 基于停车线位置的左转车辆行驶轨迹仿真模型[J]. 计算机工程与应用, 2009, 45(9): 24-27.
Chun-li Nan, Zhang Sheng-rui, Yan Bao-jie. Traveling trace simulation model for left turn vehicles based on stop line[J]. Computer Engineering and Applications, 2009, 45(9): 24-27.
16 徐慧智, 裴玉龙, 程国柱. 基于期望运行轨迹的车道变换行为安全性分析[J]. 中国安全科学学报, 2010, 20(1): 90-95, 180.
Xu Hui-zhi, Pei Yu-long, Cheng Guo-zhu. Study on the safety of lane changing based on virtual desire trajectory[J]. China Safety Science Journal, 2010, 20(1): 90-95, 180.
17 Alhajyaseen W K M, Asano M, Nakamura H, et al. Stochastic approach for modeling the effects of intersection geometry on turning vehicle paths[J]. Transportation Research Part C: Emerging Technologies, 2013, 32: 179-192.
18 . 城市道路交通标志和标线设置规范[S].
19 Wei F, Guo W, Liu X, et al. Left-turning vehicle trajectory modeling and guide line setting at the intersection[J]. Discrete Dynamics in Nature and Society, 2014(11): 1-7.
20 Qu Z W, Bai Q W, Chen Y H, et al. Optimal design of left-lane line extensions considering non-yielding maneuvers at the beginning of the permitted phase[J]. Journal of Southeast University(English Edition), 2018, 34(1): 120-126.
21 关宏志. 非集计模型—交通行为分析的工具[M]. 北京: 人民交通出版社, 2004.
22 . 道路交通标志和标线 第3部分:道路交通标线[S].
23 杨少伟. 道路勘测设计[M]. 2版. 北京: 人民交通出版社, 2009.
[1] Zhi-jun TENG,Yu ZHANG,Hao-tian LI,Ming-yang SUN. Adaptive D⁃S evidence theory map matching algorithm of complex road network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 524-530.
[2] Qiao⁃wen BAI,Zhao⁃wei QU,Yong⁃heng CHEN,Shuai XIONG,Chu⁃qing TAO. Modeling on trajectories of through vehicles with an unprotected left⁃turn phase under non⁃strict priority [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 673-679.
[3] XU Hong-feng, GAO Shuang-shuang, ZHENG Qi-ming, ZHANG Kun. Hybrid dynamic lane operation at signalized intersection [J]. 吉林大学学报(工学版), 2018, 48(2): 430-439.
[4] SONG Xian-min, DENG Xiao-lei, GAO Ming, QU Zhao-wei. Full velocity difference model based on dynamic reaction time [J]. 吉林大学学报(工学版), 2017, 47(6): 1703-1709.
[5] LI Xian-sheng, LI Ming-ming, REN You, YAN Jia-hui, CHEN Xiao-xia. Driver's fixation characteristics in different urban road alignments [J]. 吉林大学学报(工学版), 2016, 46(5): 1447-1452.
[6] XU Hong-feng, ZHANG Kun, YAO Rong-han. Control strategy of full metering signalization at roundabout [J]. 吉林大学学报(工学版), 2016, 46(1): 76-84.
[7] XU Hong-feng, GENG Xian-cai, HE Long. Signal timing plan for fully signalized four-leg roundabouts with single-approach-entering operation [J]. 吉林大学学报(工学版), 2014, 44(4): 953-962.
[8] YANG Qing-fang, MEI Duo, HAN Zhen-bo, ZHANG Biao. Ant colony optimization for the shortest path of urban road network based on cloud computing [J]. 吉林大学学报(工学版), 2013, 43(05): 1210-1214.
[9] WANG Xiao-wei, WANG Dian-hai, JIANG Sheng, JIN Sheng. Isolated intersection control based on hybrid optimization model [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 170-174.
[10] WEI Li-ying;YING Li-tian. Modeling and simulation on bicycle traffic flow based on cellular automaton [J]. 吉林大学学报(工学版), 2011, 41(01): 51-0055.
[11] LIU Xin, WANG Dian-Hai, WANG Xin-Ying, SONG Xian-Min, WANG De-Min. Information collection and processing method for intelligent traffic system based on IPv6 [J]. 吉林大学学报(工学版), 2010, 40(05): 1225-1229.
[12] DUAN Hou-li, LI Zhi-heng, ZHANG Yi,HU Jian-ming. Dynamic subdivision of road network into coordinated control regions [J]. 吉林大学学报(工学版), 2009, 39(增刊2): 13-0018.
[13] GUI Hai-Lin, WANG Jin-Song, WANG Yun-Peng, E Wen-Juan, GAO Lei. Vehicle fuel consumption model based on urban road operations [J]. 吉林大学学报(工学版), 2009, 39(05): 1146-1150.
[14] WANG Yun-peng,SUN Wen-cai,LI Shi-wu,ZHOU Ru-bo,ZHANG Jing-hai,LIU Yu .

Route optimization model for urban hazardous material transportation based on Arc GIS

[J]. 吉林大学学报(工学版), 2009, 39(01): 45-49.
[15] Jiang Gui-yan,Guo Hai-feng,Wu Chao-teng . Identification method of urban road traffic conditions
based on inductive coil data
[J]. 吉林大学学报(工学版), 2008, 38(增刊): 37-0042.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!