Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (6): 2021-2030.doi: 10.13229/j.cnki.jdxbgxb20200653

Previous Articles    

Solidification behavior and quality control of molten copper in SCR production line

Hui-shuang JI1,2(),Yan PENG1(),Yang LIU1,Yan-bo YANG1,Kun GAO1,Li-min ER2   

  1. 1.National Engineering Research Center for Equipment and Technology of Cold Strip Rolling,Yanshan University,Qinhuangdao 066004,China
    2.Jiangsu Hengtong Precision Metal Material Co. ,Ltd. ,Suzhou 215232,China
  • Received:2020-08-27 Online:2021-11-01 Published:2021-11-15
  • Contact: Yan PENG E-mail:tureleo@163.com;pengyan@ysu.edu.cn

Abstract:

The stability of temperature field control directly affects the stability of production and quality. Based on the practical production experience, the solidification behavior of molten copper in the continuous casting system of SCR continuous casting and rolling production line and its influencing factors were studied. The influence mechanisms (temperature field, flow field, and solidification crystallization behavior of copper liquid)of casting process parameters such as casting temperature, casting speed, acetylene flow rate and cooling water control were discussed. The formation reasons (casting temperature, casting speed and cooling water flow rate fluctuate greatly) of microstructure defects were analyzed, and the optimization method of slab quality was proposed. The research work has important reference significance for analyzing SCR production line to improve the quality of copper rod.

Key words: material synthesis and processing technology, continuous casting and rolling, copper billet, solidification behavior, process optimization

CLC Number: 

  • TF811

Fig.1

Structure diagram of five wheel casting machine"

Fig.2

Casting process parameters determine the microstructure of copper billet"

Fig.3

Solidification behavior of copper in crystalline cavity"

Fig.4

Microstructure of continuous casting slab"

Fig.5

Metallographic structure at different casting temperatures"

Fig.6

Metallographic structure ofdifferent casting spee"

Table 1

Water distribution of SCR3000casting machine"

结晶轮侧冷却水钢带侧冷却水
流量/(L·min-1

喷嘴

个数

流量/(L·min-1

喷嘴

个数

冷却1区8.327~29.523157.57~22.7114
冷却2区37.851425.73814
冷却3区38.85728.76610

Fig.7

Simulation of copper liquid flow in crystalline cavity"

Fig.8

Simulation of temperature field distribution in crystalline region"

Table 2

Basic model of copper solidification"

计算目标模型模型表达式相关参数
温度场二维热传导方程??xλ?T?x+??yλ?T?y+q*=cρ?T?tρ为材料密度;c为材料比热;q*为微体内热源产生的热量。
形核密度连续形核模型dndΔT=nmax2πΔTσexp-12ΔT-ΔTˉΔTσ2ΔTσ为合金标准方差过冷度;ΔTˉ为最大形核过冷度;nmax为最大形核数。
形核概率经验公式Pn=δn?VmPn为形核概率;δn为形核密度;Vm为每个网格单元的体积。
形核判定形核判定方程Ax,y=0,Pnt+Δtn1,Pnt+Δt>nAx,y为元胞的状态;n为0到1的任意值。
柱状晶生长KGT模型ν=αΔT2+βΔT3αβ为回归系数,与合金自身成分有关。
等轴晶生长溶质扩散模型fs=fg?fi=fgΩPeg,Peg=RviDlgPeg=1+32Peg+1Peg2+14Peg3fsfgfi分别为已凝固初生枝晶、液相和球状晶粒中的固相分数;Ω为过饱和度;gPeg为Peclet数的函数。
生长概率生长长度计算lt+δt=tt+δtVΔTtdtcosθ+sinθδt为微观时间步长;V为生长速度;ΔTtt时刻过冷度;θ为对象元胞晶体学取向与该元胞与邻居元胞连线的夹角。
生长判定判定方程Ax,y=0,Δfsδt<11,Δfsδt=1Δfsδt为在一个微观时间步长δt内固相率的变化。
微观时间步长时间步长方程Δt=Δx2ρc6?λλ为合金导热率;Δx为微观空间距离。
宏观时间步长时间步长方程δt=mindxVmaxδt,dx2DL1number3Vmaxδt为所有生长状态元胞生长速度的最大值。

Table 3

Continuous casting system with different process parameters"

工况铸机速度/(t·h-1浇包温度/℃水温/℃铸轮侧温度/℃NIP/(L·min-1冷却水流量/(L·min-1
钢带1钢带2钢带3铸轮内1铸轮内2铸轮内3机器侧操作侧
a24.5113628945115332630925350950698100
b2511292099581542952982514984909693
c24.511182577551522923022505064868784
d2411162979501512983052575054758583
e24.511162483531542813202605024808399
f24.511242883511512993062585074798385

Fig.9

Microstructure of copper billet underdifferent process parameters"

Fig.10

Quality control of crystallizing cavity structure in SCR continuous casting"

1 黄毫士.裸电线十年回顾与展望[R].上海:上海电缆研究所,2009.
Huang Hao-shi. Review and Prospect of bare wire in the past ten years[R]. Shaihai: Shanghai Electric Cable Research Institute, 2009.
2 黄崇祺.金属导体及其应用[M].上海:上海电缆研究所出版,2007.
3 黄崇祺.电工用铜线的性能和提高铜线质量的对策[J].电线电缆, 2008, 50(3): 1-7.
Huang Chong-qi. Properties of the electrical copper conductors and method to improve the quality of the copper conductors[J]. Wire & Cable,2008,50(3):1-7.
4 王君.中国铜加工行业发展现状和展望[J].中国有色金属,2010, 27(1):44-45.
Wang Jun. Development status and prospect of China's copper processing industry[J]. China Nonferrous Metals, 2010, 27(1):44-45.
5 余晓军, 刘原丞. SCR连铸连轧生产线铸机水流量控制改进措施[J]. 云南冶金,2014,43(5):79-84.
Yu Xiao-jun, Liu Yuan-cheng. The improvement approaches for the water flow controlling of the caster in scr production line[J]. Yunnan Metallurgy, 2014, 43(5):79-84.
6 张伟旗. SCR竖炉加料系统故障诊断与预防维修技术研究[J]. 有色金属加工,2015,43(2):26-29.
Zhang Wei-qi. Study of fault diagnosis and preventive maintenance technology for scr shaft furnace charging system[J]. Nonferrous Metals Processing, 2015, 43(2):26-29.
7 张伟旗. SCR铜杆生产线摩根轧机断辊机理分析及关键技术研究[J]. 有色金属加工,2015,43(3):27-30.
Zhang Wei-qi. Study of mechanism and key technology for roll breakage of morgan rolling mill in scr copper rod production line[J]. Nonferrous Metals Processing, 2015,44(3):27-30.
8 张伟旗. SCR铜杆卷取打包系统优化设计及关键技术研究[J]. 中国设备工程,2015(11):57-60.
Zhang Wei-qi. Optimization design and key technology research of SCR copper rod take-up and packing system[J].China Plant Engineering, 2015(11):57-60.
9 王秀玲. SCR连铸连轧生产线铸造轧制工艺对铜杆性能的影响[J]. 中国有色金属,2018,35():323-328.
Wang Xiu-ling. Effect of casting and rolling process on properties of copper rod in SCR continuous casting and rolling production line[J]. China Nonferrous Metals, 2018, 35(Sup.1):323-328.
10 姬会爽,张文浩,刘洋,等. 浅析SCR3000生产线铜杆热连轧轧辊粘铜机理及预防措施[C]∥2019年中国铜加工产业年度大会暨中国(绍兴)铜产业发展高峰论坛,绍兴,2019:580-586.
11 余琪,危利民,李明茂,等. 铜杆组织性能对漆包线表面缺陷的影响[J]. 电线电缆,2019,61(5):11-13.
Yu Qi, Wei Li-min, Li Ming-mao, et al. Effect of microstructure and properties of copper rod on surface defects of enameled wire[J]. Electric Wire & Cable, 2019, 61(5):11-13.
12 Ji Hui-shuang, Liu Yang, Peng Yan, et al. Study on process simulation and quality control of copper rod continuous casting and rolling[J]. The International Magazine for the Wire & Cable Industries, 2019: 51-55.
13 Sahoo S, Kumar A, Dhindaw B K, et al. Modeling and experimental validation of rapid cooling and solidification during high-speed twin-roll strip casting of Al-33 wt pct Cu[J]. Metallurgical and Materials Transactions B, 2012, 43(4):915-924.
14 介要奇. SCR1600 连铸连轧生产线浇铸机的操作[J]. 中国有色冶金,2007,36(5):94-96.
Yao-qi Jie. Operation of casting machine for SCR1600 continuous casting and rolling production line[J]. China Nonferrous Metals, 2007,36(5):94-96.
15 杨玉林. SCR铸造工艺对铸造质量的影响研究[J]. 热加工工艺,2014,43(1):81-84.
Yang Yu-lin. Influence of SCR casting process on quality of casting[J]. Hot Working Technology, 2014, 43(1): 81-84.
16 孙力玲, 董连科, 张济山, 等. 高温合金定向凝固行为的分形分析[J]. 金属学报, 1993, 29(3):19-24.
Sun Li-ling, Dong Lian-ke, Zhang Ji-shan, et al. Fractal analysis of directional solidification behavior of superalloy[J]. Acta Metallurgica Sinica, 1993, 29(3):19-24.
17 禹建敏.对提高铜线坯质量的探讨[J]. 铜业工程, 2005,21(1): 35-40.
Yu Jian-min. A discussion of how to improve the quality of copper rod[J]. Copper Engineering, 2005, 21(1):35-40.
18 尚泽. 五轮式连铸低氧铜技术研究及流场温度场的数值模拟[D]. 秦皇岛:燕山大学电气工程学院, 2019.
Shang Ze. Research on five-wheel continuous casting low oxygen copper technology and flow and temperature field numerical simulation[D]. Qinhuangdao: School of Electrical Engineering, Yanshan University, 2019.
19 Ye Bin-min, Zhang Wei-qi. Improvement of qualification rate of copper rod in SCR production line[J]. Special Casting & Nonferrous Alloys,2011,31(4):388-390, 400.
20 王秀玲. SCR连铸连轧生产线铸造轧制工艺对铜杆性能的影响[R].黄石:中国有色金属加工工业协会, 2018:270-279.
21 Lehman A F, Tallback G R,Kollberg S G, et al. Fluid flow control in continuous casting using various configurations of static magnetic fields[C]∥International Symposium on Electromagnetic Processing of Materials, Nogoya, Japan, 1994:372-377.
22 张伟旗. SCR铜杆生产线铸轮结垢机理分析及关键技术研究[J]. 铸造技术, 2015, 36(9):2367-2371.
Zhang Wei-qi. Mechanism analysis and key technology research of SCR copper rod production line of casting wheel scaling[J]. Foundry Technology, 2015, 36(9):2367-2371.
23 郭建立. SCR1300连铸连轧生产线的浇铸机及其工艺条件对铜杆质量的影响[J]. 电线电缆,1994,36(4):44-47.
Guo Jian-li. Effect of casting machine and process conditions on quality of copper rod in scr1300 continuous casting and rolling line[J]. Electric Wire & Cable, 1994, 36(4):44-47.
24 李来军. 连续定向凝固技术制备Cu-Ag、Cu-Cr合金线材及其组织和性能的研究[D]. 兰州:兰州理工大学材料科学与工程学院有色金属新材料国家重点实验室, 2004.
Li Lai-jun. Study on microstructure and properties of Cu-Ag and Cu-Cr alloy wires prepared by continuous directional solidification process[D]. Lanzhou:School of Materials Science and Engineering Non-Ferrous Metal New Materials National Key Laboratory, Lanzhou University of Technology, 2004.
25 杨运川. SCR连铸连轧铜合金的组织与性能研究[D].昆明:昆明理工大学材料与冶金工程学院,2011.
Yang Yun-chuan. Microstructure and properties of SCR continuous casting and rolling copper alloy[D]. Kunming:College of materials and Metallurgical Engineering,Kunming University of Science and Technology,2011.
26 张凯. 铜管水平连铸过程数值模拟及结晶器结构参数优化研究[D]. 秦皇岛:燕山大学机械工程学院,2019.
Zhang Kai. Numerical simulation of copper tube horizontal continuous casting and optimization of mold structure parameters[D]. Qinhuangdao: School of Mechanical Engineering, Yanshan University, 2019.
[1] Hong-liang XIANG,Sheng-tao CHEN,Li-ping DENG,Wei ZHANG,Tu-sheng ZHAN. Microstructure and properties of microalloying 2205 duplex stainless steel [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1645-1652.
[2] Xiao-yan GU,Dong-feng LIU,Jing LIU,Da-qian SUN,Hui-feng MA. Effect of welding energy on microstructure and mechanical properties of Cu/Al joints welded by ultrasonic welding [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1600-1607.
[3] Zhuo YI,Wen-zhi FU,Ming-zhe LI. Numerical simulation and experiment on double⁃layered split ultrahigh pressure die [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1593-1599.
[4] Xue⁃guang ZHANG,Ming⁃meng JIA,Chun⁃guo LIU,Guang⁃zhong HE. Trajectory design and FE simulation for profile stretch bending based on incremental control method [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1272-1279.
[5] WANG Chun-sheng, ZOU Li, YANG Xin-hua. Analysis of fatigue life factors of aluminum alloy welded joints based on neighborhood rough set theory [J]. 吉林大学学报(工学版), 2017, 47(6): 1848-1853.
[6] WANG Hui, ZHOU Jie, XIONG Yu, TAO Ya-ping, XIANG Rong. Springback compensation for stamping part with complex surface based on reverse engineering [J]. 吉林大学学报(工学版), 2017, 47(6): 1842-1847.
[7] LYU Meng-meng, GU Zheng-wei, XU Hong, LI Xin. Process optimization of hot stamping for anti-collision beam with ultra high strength [J]. 吉林大学学报(工学版), 2017, 47(6): 1834-1841.
[8] HU Kan, YU Ye, YING Liang, HU Ping, HOU Wen-bin. Optimization design of hot-stamping beam structure considering rollover crash safety of school bus [J]. 吉林大学学报(工学版), 2017, 47(3): 884-890.
[9] LUN Feng-yan, FU Wen-zhi, LI Ming-zhe, YI Zhuo, WANG Xin-tong, CHEN Xue. Forming of flexible rolling of three-dimensional surface based on bended rolls [J]. 吉林大学学报(工学版), 2017, 47(3): 876-883.
[10] HU Zhi-qing,ZHEN Jiao-jiao,FENG Zeng-ming,ZHOU Shu-hong. Flexible rolling and stretch forming surface technology and numerical simulation [J]. 吉林大学学报(工学版), 2014, 44(3): 701-707.
[11] WANG Mi, CAI Zhong-yi, LI Ming-zhe, WANG Da-ming. Calculation of bending deformation of flexible roll forming for three-dimensional surface parts and numerical simulation [J]. 吉林大学学报(工学版), 2014, 44(2): 404-408.
[12] CAO Jun-hui, FU Wen-zhi, LI Ming-zhe, PENG He-li. Influence factors on dimpling in multi-point thermoforming for polymer sheet [J]. 吉林大学学报(工学版), 2013, 43(06): 1536-1540.
[13] LI Ren-jun, LI Ming-zhe, XUE Peng-fei, CAI Zhong-yi, QIU Ning-jia. Method of flexible rolling for surface sheet metal [J]. 吉林大学学报(工学版), 2013, 43(06): 1529-1535.
[14] SUI Zhou, CAI Zhong-yi, LAN Ying-wu, LI Ming-zhe. Shape control model for three-dimensional surface part in continuous flexible forming process [J]. 吉林大学学报(工学版), 2013, 43(05): 1302-1306.
[15] CHEN Wei, NA Jing-xin. One step forming positive method based on deformation theory [J]. 吉林大学学报(工学版), 2013, 43(02): 358-362.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!