Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (3): 633-639.doi: 10.13229/j.cnki.jdxbgxb20200871
Xiang-jun LI1,2(),Jie-ying TU1,Zhi-bin ZHAO1()
CLC Number:
1 | Jiang Y, He L, Wu P, et al. Simultaneous identification of ten bacterial pathogens using the multiplex ligation reaction based on the probe melting curve analysis[J]. Scientific Reports, 2017, 7(1): 1-9. |
2 | Ahmed F E, Gouda M M, Hussein L A, et al. Role of melt curve analysis in interpretation of Nutrigenomics' MicroRNA expression data[J]. Cancer Genomics-Proteomics, 2017, 14(6): 469-481. |
3 | Min S, Lee B, Yoon S. Deep learning in bioinformatics[J]. Briefings in bioinformatics, 2017, 18(5): 851-869. |
4 | Tang B, Pan Z, Yin K, et al. Recent advances of deep learning in bioinformatics and computational biology[J]. Frontiers in Genetics, 2019, 10: 214. |
5 | 赵宏伟, 刘晓涵, 张媛, 等. 基于关键点注意力和通道注意力的服装分类算法[J]. 吉林大学学报:工学版, 2020, 50(5): 1765-1770. |
Zhao Hong-wei, Liu Xiao-han, Zhang Yuan, et al. Clothing classification algorithm based on landmark attention and channel attention[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(5): 1765-1770. | |
6 | Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks[J]. Radiology, 2017, 284(2): 574-582. |
7 | 陈绵书, 于录录, 苏越,等. 基于卷积神经网络的多标签图像分类[J]. 吉林大学学报:工学版, 2020, 50(3):1077-1084. |
Chen Mian-shu, Yu Lu-lu, Su Yue, et al. Multi-label images classification based on convolutional neural network [J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 1077-1084. | |
8 | Wang F, Jiang M, Qian C, et al. Residual attention network for image classification[C]∥Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 3156-3164. |
9 | Phan H, Andreotti F, Cooray N, et al. Joint classification and prediction CNN framework for automatic sleep stage classification[J]. IEEE Transactions on Biomedical Engineering, 2018, 66(5): 1285-1296. |
10 | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2016: 770-778. |
11 | Yu F, Koltun V, Funkhouser T. Dilated residual networks[C]∥Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 472-480. |
12 | Jia X, De Brabandere B, Tuytelaars T, et al. Dynamic filter networks[C]∥ Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 667-675. |
13 | Landi F, Baraldi L, Corsini M, et al. Embodied vision-and-language navigation with dynamic convolutional filters[J]. arXiv Preprint arXiv:, 2019. |
14 | Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]∥ Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5998-6008. |
15 | Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. arXiv Preprint arXiv:, 2014. |
16 | Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: alexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size[J]. arXiv Preprint arXiv:, 2016. |
17 | Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions[C]∥Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1-9. |
18 | Tan M X, Chen B, Pang R M, et al. Mnasnet: platform-aware neural architecture search for mobile[C]∥Proceedings of the 32nd IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 2820-2828. |
19 | Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[C]∥Proceedings of the 2019 IEEE International Conference on Computer Vision, Seoul, South Korea, 2019: 1314-1324. |
20 | Howard A G, Zhu M, Chen B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[J]. arXiv Preprint arXiv:, 2017. |
21 | Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]∥Proceedings of the 31st IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4510-4520. |
22 | Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]∥Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4700-4708. |
[1] | Liang DUAN,Chun-yuan SONG,Chao LIU,Wei WEI,Cheng-ji LYU. State recognition in bearing temperature of high-speed train based on machine learning algorithms [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 53-62. |
[2] | Hui ZHONG,Heng KANG,Ying-da LYU,Zhen-jian LI,Hong LI,Ruo-chuan OUYANG. Image manipulation localization algorithm based on channel attention convolutional neural networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1838-1844. |
[3] | Hou⁃jie LI,Fa⁃sheng WANG,Jian⁃jun HE,Yu ZHOU,Wei LI,Yu⁃xuan DOU. Pseudo sample regularization Faster R⁃CNN for traffic sign detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1251-1260. |
[4] | Qian-yi XU,Gui-he QIN,Ming-hui SUN,Cheng-xun MENG. Classification of drivers' head status based on improved ResNeSt [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 704-711. |
[5] | Xiang-jiu CHE,Hua-luo LIU,Qing-bin SHAO. Fabric defect recognition algorithm based onimproved Fast RCNN [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2038-2044. |
[6] | CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951. |
[7] | CHEN Zai-qing, SHI Jun-sheng, BAI Feng-xiang. Automatic image classification based on fuzzy-rough set [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 209-212. |
[8] | WANG Ying, GUO Lei, LIANG Nan. Classification algorithm of hyperspectral images based on kernel entropy analysis [J]. , 2012, (06): 1597-1601. |
[9] | LIU Ping-ping, ZHAO Hong-wei, GENG Qing-tian, DAI Jin-bo. Image classification method based on local feature and visual cortex recognition mechanism [J]. 吉林大学学报(工学版), 2011, 41(05): 1401-1406. |
[10] | Cao Chun-hong Zhang Bin,Li Xiao-lin . Medical image classification technology based on fuzzy support vector machine [J]. 吉林大学学报(工学版), 2007, 37(03): 630-0633. |
|