Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (5): 1866-1872.doi: 10.13229/j.cnki.jdxbgxb20210455

Previous Articles    

Statistical analysis system for students' examination results based on decision tree classification technology

Xiao-xue SUN1(),Hui ZHONG2(),Hai-peng CHEN3   

  1. 1.Teaching Department of China Japan Union Hospital,Jilin University,Changchun 130031,China
    2.Management Center of Big Data and Network,Jilin University,Changchun 130012,China
    3.College of Computer Science and Technology,Jilin University,Changchun 130012,China
  • Received:2021-05-24 Online:2021-09-01 Published:2021-09-16
  • Contact: Hui ZHONG E-mail:632621586@qq.com;zhongh@jlu.edu.cn

Abstract:

In order to improve the defect of relying too much on manual statistical analysis of students' examination results and unable to mine the useful information contained in the results, a statistical analysis system of students' examination results based on decision tree classification technology is designed. The data layer of the system uses SQL Server 2000 database to store all the data during the operation of the system; The application layer of business logic collects the data of students' test scores from the data layer and processes the relevant business function logic. The C4.5 Classification Technology of decision tree is used to realize the accurate classification of massive students' test scores. The C4.5 Classification Technology of decision tree selects the classification attributes based on the information gain rate and uses the post pruning method to process the data to improve the data classification accuracy; The statistical analysis results of the business logic layer are transmitted to the users through the browser application layer using the web server. The system test results show that the designed system can statistically analyze the examination results of different professionals according to the user needs, and still has high statistical analysis accuracy in the case of noise.

Key words: computer application, decision tree classification, student test results, statistics analysis, system design

CLC Number: 

  • TP391

Fig.1

System architecture diagram"

Fig.2

System function structure diagram"

Fig.3

System design flow chart"

Table 1

Distribution of research objects"

序号专业名称考试人数/人考试年级
1超声医学科132018
2儿科32018
3耳鼻咽喉科32018
4放射科182018
5放射肿瘤科52018
6妇产科72018
7骨科442018
8核医学科22018
9急诊科22018
10检验医学科12018
11口腔全科32018
12麻醉科152018
13内科522018
14皮肤科32018
15神经内科222018
16外科702018
17眼科22018

Table 2

Information entropy and information gain rate"

序号专业名称信息熵信息增益率
1超声医学科0.9580.008
2儿科0.9460.012
3耳鼻咽喉科0.9750.008
4放射科0.9620.006
5放射肿瘤科0.9450.007
6妇产科0.9850.012
7骨科0.9460.015
8核医学科0.9250.012
9急诊科0.9850.012
10检验医学科0.9740.014
11口腔全科0.9680.009
12麻醉科0.9740.008
13内科0.9850.007
14皮肤科0.9460.012
15神经内科0.9750.019
16外科0.9680.015
17眼科0.9780.017

Fig.4

Distribution of failed candidates"

Table 3

Analysis results of examination"

序号专业名称平均分最高分最低分不及格人数/人
1超声医学科83.4696750
2儿科88.6792860
3耳鼻咽喉科76.6781730
4放射科48.679007
5放射肿瘤科70.4089600
6妇产科71.6489600
7骨科55.6493014
8核医学科82.0082820
9急诊科69.0072660
10检验医学科89.0089890
11口腔全科47.007101
12麻醉科74.409400
13内科62.2586010
14皮肤科77.0097630
15神经内科75.778501
16外科69.908904
17眼科33.506701

Fig.5

Statistical results of fractional segments"

Fig.6

Comparison results of robustness of statistical analysis system for students' examination"

1 刘振宇, 宋晓莹. 一种可用于分类型属性数据的多变量决策树算法[J]. 东北大学学报: 自然科学版, 2020, 41(11): 1521-1527.
Liu Zhen-yu, Song Xiao-ying. An applicable multivariate decision tree algorithm for categorical attribute data[J]. Journal of Northeastern University(Natural Science), 2020, 41(11): 1521-1527.
2 崔文泉, 黄禹侨. 高维数据情形下的一种基于随机投影的集成分类方法[J]. 中国科学技术大学学报, 2019, 49(12): 974-984.
Cui Wen-quan, Huang Yu-qiao. A new random projection-based ensemble classifier for high-dimensional data[J]. Journal of University of Science and Technology of China, 2019, 49(12): 974-984.
3 刘通. 5G D2D网络中基于机器学习的中继选择策略[J]. 中国电子科学研究院学报, 2019, 14(10): 1016-1021.
Liu Tong. Relay selection strategy based on machine learning in 5G D2D network[J]. Journal of China Academy of Electronics and Information Technology, 2019, 14(10): 1016-1021.
4 王文霞. 数据挖掘中改进的C4.5决策树分类算法[J]. 吉林大学学报: 理学版, 2017, 55(5):1274-1277.
Wang Wen-xia. Improved c4.5decision tree classification algorithm in data mining[J]. Journal of Jilin University(Science Edition), 2017, 55(5):1274-1277.
5 杨勇, 张磊, 曲福恒, 等. 基于最频繁项提取和候选集剪枝的THIMFUP算法[J]. 吉林大学学报: 理学版, 2021, 59(3): 635-642.
Yang Yong, Zhang Lei, Qu Fu-heng, et al. THIMFUP algorithm based on the most frequent item extraction and candidate set pruning[J]. Journal of Jilin University(Science Edition), 2021, 59(3): 635-642.
6 赵宏, 常兆斌, 王伟杰. 基于深度自编码和决策树的恶意域名检测[J]. 微电子学与计算机, 2020, 37(5): 13-17.
Zhao Hong, Chang Zhao-bin, Wang Wei-jie. Malicious domain name detection based on deep auto-encoder and decision tree[J]. Microelectronics & Computer, 2020, 37(5): 13-17.
7 张旭, 周新志, 赵成萍, 等. 基于犹豫模糊决策树的非均衡数据分类[J]. 计算机工程, 2019, 45(8): 75-79, 91.
Zhang Xu, Zhou Xin-zhi, Zhao Cheng-ping, et al. Unbalanced data classification based on hesitant fuzzy decision tree[J]. Computer Engineering, 2019, 45(8): 75-79, 91.
8 颜晓佳, 张胜. 基于Excel软件的成绩管理系统设计与开发[J]. 教学与管理(中文版), 2020(3): 15-17.
9 王平, 鲜亮. 大学生学习成绩分析及相应的差异教学策略[J]. 化学教育, 2019, 40(24): 16-23.
Wang Ping, Xian Liang. Research of college students' academic achievements and corresponding difference teaching strategies[J]. Chinese Journal of Chemical Education, 2019, 40(24): 16-23.
10 郭慧, 刘忠宝, 柳欣. 基于云模型与决策树的入侵检测方法[J]. 计算机工程, 2019, 45(4): 142-147.
Guo Hui, Liu Zhong-bao, Liu Xin. Intrusion detection method based on cloud model and decision tree[J]. Computer Engineering, 2019, 45(4): 142-147.
11 邓蔚,陈秀婷,张清华,等.基于树模型的差分隐私保护算法[J].重庆邮电大学学报:自然科学版,2020,32(5):848-849.
Deng Wei, Chen Xiu-ting, Zhang Qing-hua, et al. Differential privacy protection algorithms based on tree models[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2020,32(5):848-849.
12 余敦辉, 张笑笑, 付聪, 等. 基于决策树的敏感词变形体识别算法研究及应用[J]. 计算机应用研究, 2020, 37(5): 1395-1399, 1405.
Yu Dun-hui, Zhang Xiao-xiao, Fu Cong, et al. Research and application of change form of sensitive words recognition algorithm based on decision tree[J]. Application Research of Computers, 2020, 37(5): 1395-1399, 1405.
13 高宁化, 王姮, 冯兴华. 基于动态模糊决策树的心电信号分类方法[J]. 计算机工程, 2020, 46(1): 80-86.
Gao Ning-hua, Wang Heng, Feng Xing-hua. Classification method of electrocardiogram signals based on dynamic fuzzy decision tree[J]. Computer Engineering, 2020, 46(1): 80-86.
14 柳春艳, 李丹, 张宝仁, 等. SPOC翻转课堂教学有效性的系统评价与元分析[J]. 开放教育研究, 2019, 25(1): 36,82-91.
Liu Chun-yan, Li Dan, Zhang Bao-ren, et al. Teaching effectiveness of SPOC flipped classroom in college: a systematic review and meta-analysis[J]. Education Research, 2019, 25(1): 36,82-91.
15 谭常春, 李曼丽. 面板数据均值共同变点分析在高校在校成绩上的应用[J]. 合肥工业大学学报: 自然科学版, 2020, 43(6): 855-858.
Tan Chang-chun, Li Man-li. Application of common mean breaks analysis of panel data in college performance[J]. Journal of Hefei University of Technology(Natural Science), 2020, 43(6): 855-858.
16 郭鹏, 蔡骋. 基于聚类和关联算法的学生成绩挖掘与分析[J]. 计算机工程与应用, 2019, 55(17): 169-179.
Guo Peng, Cai Cheng. Data mining and analysis of students' score based on clustering and association algorithm[J]. Computer Engineering and Applications, 2019, 55(17): 169-179.
17 王少卿, 焦艳. 高中化学教师资格考试大纲中动词的统计与分析[J]. 化学教育, 2019, 40(9): 70-74.
Wang Shao-qing, Jiao Yan. Statistics and analysis of verbs in outline of senior high school chemistry teacher qualification examination[J]. Chinese Journal of Chemical Education, 2019, 40(9): 70-74.
18 朵琳, 杨丙. 基于概念格的稀疏数据协同过滤校正自然噪声方法[J]. 吉林大学学报: 理学版, 2020, 58(5): 1173-1180.
Duo Lin, Yang Bing. Collaborative filtering correction of natural noise method of sparse data based on concept lattice[J]. Journal of Jilin University(Science Edition), 2020, 58(5): 1173-1180.
19 段亚军, 杨有龙, 白旭英. 基于模糊规则的随机缺失属性值数据分类算法[J]. 吉林大学学报: 理学版, 2019, 57(1): 89-96.
Duan Ya-jun, Yang You-long, Bai Xu-ying. Classification algorithm of random missing attribute value data based on fuzzy rule[J]. Journal of Jilin University(Science Edition), 2019, 57(1): 89-96.
20 王雅超. 基于大数据分析的散乱缺损信息无损恢复方法[J]. 吉林大学学报: 理学版, 2020, 58(3): 645-650.
Wang Ya-chao. Lossless restoration method of scattered defect information based on big data analysis [J]. Journal of Jilin University(Science Edition), 2020, 58(3): 645-650.
21 殷君茹, 侯瑞霞, 唐小明, 等. 基于瓦片金字塔模型的海量空间数据快速分发方法[J]. 吉林大学学报: 理学版, 2015, 53(6): 1269-1274.
Yin Jun-ru, Hou Rui-xia, Tang Xiao-ming, et al. Fast distribution method for large data set of spatial data based on tiles pyramid model[J]. Journal of Jilin University(Science Edition), 2015, 53(6):1269-1274.
[1] Jie CAO,Xue QU,Xiao-xu LI. Few⁃shot image classification method based on sliding feature vectors [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1785-1791.
[2] Meng-su ZHANG,Chun-tian LIU,Xi-jin LI,Yong-ping HUANG. Design of fuzzy comprehensive evaluation system for performance appraisal based on K⁃means clustering algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1851-1856.
[3] Yin-di YAO,Jun-jin HE,Yang-li LI,Dang-yuan XIE,Ying LI. ET0 simulation of self⁃constructed improved whale optimized BP neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1798-1807.
[4] Hong-wei ZHAO,Zi-jian ZHANG,Jiao LI,Yuan ZHANG,Huang-shui HU,Xue-bai ZANG. Bi⁃direction segmented anti⁃collision algorithm based on query tree [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1830-1837.
[5] Chun-bo WANG,Xiao-qiang DI. Cloud storage integrity verification audit scheme based on label classification [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1364-1369.
[6] Dan-tong OUYANG,Yang LIU,Jie LIU. Fault diagnosis method based on test set under fault response guidance [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1017-1025.
[7] Rong QIAN,Ru ZHANG,Ke-jun ZHANG,Xin JIN,Shi-liang GE,Sheng JIANG. Capsule graph neural network based on global and local features fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1048-1054.
[8] Xiao-long ZHU,Zhong XIE. Geospatial data extraction algorithm based on machine learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1011-1016.
[9] Bao-feng SUN,Xin-xin REN,Zai-si ZHENG,Guo-yi Li. Multi⁃objective flow shop optimal scheduling considering worker's load [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 900-909.
[10] Yuan-ning LIU,Di WU,Xiao-dong ZHU,Qi-xian ZHANG,Shuang-shuang LI,Shu-jun GUO,Chao WANG. User interface components detection algorithm based on improved YOLOv3 [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1026-1033.
[11] Guang-qiu CHEN,Yu-cun CHEN,Jia-yue LI,Guang-wen LIU. Infrared and visible image fusion based on discrete nonseparable shearlet transform and convolutional sparse representation [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 996-1010.
[12] Shu-min WANG,Wei CHEN. Algorithm for identifying abnormal behavior in underground mines based on continuous density hidden Markov model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1067-1072.
[13] Shu-tao SHEN,Zha-xi NIMA. Double chaos identifiable tampering image encryption method based on blockchain technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1055-1059.
[14] Bing-hai ZHOU,Zhao-xu HE. Static semi⁃kitting strategy⁃based multi⁃objective just⁃in⁃time material distribution scheduling [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 910-916.
[15] Tian-qi GU,Chen-jie HU,Yi TU,Shu-wen LIN. Robust reconstruction method based on moving least squares algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 685-691.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!