Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (10): 2294-2299.doi: 10.13229/j.cnki.jdxbgxb20210490

Previous Articles    

Flow heat transfer performance of microchannel low temperature heat exchanger

Zhen-jun XU1(),Hao WANG1,2,Yin-cheng WANG3,Nuo ZHANG2,Meng CHEN1,Qing-qing LI1   

  1. 1.College of Civil Engineering&Architecture,Qingdao Agricultural University,Qingdao 266300,China
    2.Mechanical and Electrical Engineering,Qingdao Institute of Technology,Qingdao 266300,China
    3.School of Mechanical Engineering,Tianjin University of Commerce,Tianjin 300133,China
  • Received:2021-06-01 Online:2022-10-01 Published:2022-11-11

Abstract:

Based on the perfomance of small volume and high heat exchange efficiency for the microchannel heat exchanger and widely use in the fields of microelectronics, industrial refrigeration, electric vehicle air conditioning and so on, the physical model and mathematical model of microchannel low temperature heat exchanger are established and solved in the paper. To reveal the flow and heat transfer performance of microchannel low-temperature heat exchanger with hydraulic diameter less than 1 mm, the effects of changing inlet velocity and different aspect ratio on the resistance pressure drop, wall temperature, channel outlet fluid temperature and friction coefficient of the heat exchanger are studied. The results show that the above parameters were obviously effected by different aspect ratios. The microchannel pressure drop increases with the increase of flow velocity, and the increasing trend of pressure drop increases. The wall temperature, channel fluid outlet temperature and friction coefficient decrease with the increase of flow velocity, and finally tend to be stable. The parameter values of the channel with aspect ratio of 4 are generally larger than those of the channel with aspect ratio of 1. The aspect ratio has a great impact on the heat transfer performance of the microchannel heat exchanger.

Key words: power engineering, engineering thermophysics, microchannel, inlet velocity, aspect ratio, low temperature heat exchanger

CLC Number: 

  • TB61

Table 1

Structural parameters of microchannel heat exchangers"

参 数正方形截面长方形截面
长×宽×高40 mm×4 mm×1 mm40 mm×4 mm×1 mm
通道数53
微通道宽0.5 mm0.25 mm
微通道长0.5 mm1 mm

Fig.1

Mesh sectioning profile of the overall mesh"

Fig.2

Mesh dissection of boundary layer meshes"

Fig.3

Effect of inlet flow rate on pressure drop in microchannels"

Fig.4

Effect of inlet flow rate on microchannel wall temperature"

Fig.5

Effect of inlet flow rate on fluid outlet temperature"

Fig.6

Influence of inlet flow rate on friction coefficient"

Fig.7

Effect of inlet flow rate on Reynolds number"

1 梁朋. 矩形微通道内的流动与压降特性研究[D]. 北京:北京交通大学机械与电子控制工程学院, 2017.
Liang Peng. The characteristics of flow and pressure drop in rectangular microchannel[D]. Beijing: School of Mechanical, Electronic and Control Engineering,Beijing Jiaotong University, 2017.
2 王剑鹏, 秦四成, 杨立光, 等. 装载机液压系统的传热仿真分析[J].吉林大学学报: 工学版, 2016, 46(1): 153-158.
Wang Jian-peng, Qin Si-cheng, Yang Li-guang, et al. Simulation analysis of heat transfer in the hydraulic system of loader[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(1): 153-158.
3 葛洋, 姜未汀. 微通道换热器的研究及应用现状[J]. 化工进展, 2016, 35(): 10-15.
Ge Yang, Jiang Wei-ting. The research progress and application of the micro channel heat exchanger[J]. Chemical Industry and Engineering Progess, 2016, 35(Sup.1): 10-15.
4 刘英楠. 微通道换热器的数值模拟[D]. 大连:大连理工大学化工学院, 2016.
Liu Ying-nan. The numerical simulation of micro-channel heat exchanger[D]. Dalian:School of Chemical Engineering,Dalian University of Technology, 2016.
5 吴秋瑜. 凹穴型微通道换热器结构设计与性能研究[D]. 广州:华南理工大学机械与汽车工程学院, 2017.
Wu Qiu-yu. Structural design and study on performance offlow and heat transfer of complex microchannel heat exchanger with reentrant cavitives[D]. Guangzhou: School of Machanical & Automotive Engineering, South China University of Technology,2017.
6 范凌灏. 矩形微通道内流动传热特性的数值模拟及结构优化[D]. 济南:山东大学能源与动力工程学院, 2020.
Fan Ling-hao. Numerical analysis and structural optimization of flow and heat transfer characteristics candidate in rectangular microchannels[D]. Jinan: School of Energy and Power Engineering,Shandong University, 2020.
7 盛伟, 刘鹏鹏, 丁国良. 微通道换热器结霜性能的试验研究[J]. 流体机械, 2017, 45(1): 60-65.
Sheng Wei, Liu Peng-peng, Ding Guo-liang. Experimental research on frost performance of microchannel heat exchanger[J]. Fluid Machinery, 2017, 45(1): 60-65.
8 熊通, 晏刚, 樊超超, 等. 微通道换热器两相流分布研究现状与展望[J]. 制冷学报, 2021, 42(1): 23-35.
Xiong Tong, Yan Gang, Fan Chao-chao, et al. Review on research status and prospects of two-phase flow distribution in microchannel heat exchanger[J]. Journal of Refrigeration, 2021, 42(1): 23-35.
9 巫江虹, 谢方, 刘超鹏, 等. 电动汽车热泵空调系统微通道换热器适应性研究[J]. 机械工程学报, 2012, 48(14): 141-147.
Wu Jiang-hong, Xie Fang, Liu Chao-peng, et al. Adaptability research on micro-channel heat exchanger appued to heat pump air conditioning system for electrical vehicle[J]. Journal of Machanical Engineering, 2012, 48(14): 141-147.
10 张天一. 超临界二氧化碳微通道换热器优化分析研究[D]. 北京:华北电力大学核科学与工程学院, 2021.
Zhang Tian-yi. Optimization analysis of supercritical carbon dioxide microchannel heat exchanger[D]. Beijing:School of Nuclear Science and Engineering,North China Electric Power University, 2021.
11 翟玉玲. 复杂结构微通道热沉流动可视化及传热过程热力学分析[D]. 北京:北京工业大学环境与能源学院, 2015.
Zhai Yu-ling. Thermodynamic analysis of enhanced heat transfer process in microchannel heat sinks with complex structure[D]. Beijing: School of Environment and Energy,Beijing University of Technology, 2015.
12 白鹏飞, 汤勇, 陆龙生, 等. 以水为工质的铜基微通道热沉的流态可视化与传热特性[J]. 吉林大学学报: 工学版, 2010, 40(4): 959-964.
Bai Peng-fei, Tang Yong, Lu Long-sheng, et al. Investigation of flow pattern visualization and heat transfer characteristics on a Cu-base micro-channel heat sink with water coolant[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 40(4): 959-964.
13 席雷, 徐亮, 高建民, 等. 厚壁矩形带肋通道内蒸汽流动及传热特性[J].吉林大学学报: 工学版, 2018, 48(3): 752-759.
Xi Lei, Xu Liang, Gao Jian-min, et al. Flow and heat transfer characteristics of steam in thick-wall rectangular ribbed channel[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(3): 752-759.
[1] Zi-rong YANG,Yan LI,Xue-feng JI,Fang LIU,Dong HAO. Sensitivity analysis of operating parameters for proton exchange membrane fuel cells [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1971-1981.
[2] Zhen-jun XU,Hao WANG,Kai-yuan ZHAO,Bo-yi HAO,Qing-qing LI,Chang-hao WANG. Therodynamic performance of compound solar energy gas engine heat pump [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1759-1763.
[3] Tong-bin ZHAO,Yi-sheng WU,Yao-zong DUAN,Zhen HUANG,Dong HAN. RP⁃3 jet fuel lubricity and improvement measurements [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 533-540.
[4] Feng-wen PAN,Dong-liang GONG,Ying GAO,Ming-wei XU,Bin MA. Fault diagnosis of current sensor based on linearization model of lithium ion battery [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 435-441.
[5] MENG Yu-bo, LI Pi-mao, ZHANG You-tong, WANG Zhi-ming. Inhibition of pressure fluctuation and multi-injection fuel mass deviation in high pressure common rail system [J]. 吉林大学学报(工学版), 2018, 48(3): 760-766.
[6] SUN Zheng, HUANG Yu-qi, YU Xiao-li. Numerical simulation of flow and heat transfer in journal bearing lubrication [J]. 吉林大学学报(工学版), 2018, 48(3): 744-751.
[7] MENG Yu-bo, ZHANG You-tong, WANG Zhi-ming, ZHANG Xiao-chen, FAN Li-kang, LI Tao. Couple hysteretic thermo-electro-mechanical performance of piezoelectric actuators for fuel injector [J]. 吉林大学学报(工学版), 2018, 48(2): 480-485.
[8] CUI Jin-sheng, HOU Xu-yan, DENG Zong-quan, PAN Wan-jing, JIANG Sheng-yuan. Measurement system and experiment study of the effective thermal conductivity of granular system in a vacuum [J]. 吉林大学学报(工学版), 2016, 46(2): 457-464.
[9] QI Zi Shu, GAO Qing, LIU Yan, BAI Li. Model calculation and analysis of operation condition of heat pump using earth energy system for years [J]. 吉林大学学报(工学版), 2015, 45(6): 1811-1816.
[10] XIE Fang-xi, YU Ze-yang, LIU Si-nan, CAO Xiao-feng, JIA Gui-qi, HONG Wei. Effects of injection pressure on fuel spray and air-fuel mixing process of diesel engine [J]. 吉林大学学报(工学版), 2013, 43(06): 1504-1509.
[11] SUN Wan-chen, SUN Shi-long, WANG Xiao-dan, LI Guo-liang, LAI Chun-jie. Effect of fuel volatility on particle size distribution in common-rail diesel engine [J]. 吉林大学学报(工学版), 2013, 43(03): 619-625.
[12] QI Zi-shu, GAO Qing, LIU Yan, YU Ming. Analysis of temperature of underground heat exchanger and efficiency of heat pump with combined cooling and heating [J]. 吉林大学学报(工学版), 2012, 42(02): 339-343.
[13] Gao Yin-han,Chen Wang-feng,Cheng Peng,Li Zhen-lei,Chi Juncheng,Li Qiang3 . Twophase three dimension flow field simulation in a cyclone separator [J]. 吉林大学学报(工学版), 2008, 38(增刊): 85-0089.
[14] CHEN Hua-yan,SU Jun-lin,JIAO Zhen-wei .

Combustion characteristic of biomass compound coal

[J]. 吉林大学学报(工学版), 2008, 38(06): 1281-1286.
[15] Li Zhong-jian,Zheng Mao-yu,Wang Fang . Optimization of irreversible fourheatsource absorption
refrigerator with finite heat capacity
[J]. 吉林大学学报(工学版), 2008, 38(02): 283-0286.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!