Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (2): 361-367.doi: 10.13229/j.cnki.jdxbgxb20211100

Previous Articles    

Multi⁃objective optimization design of accelerated degradation test based on Gamma process

Li-jie ZHANG1,2,3(),Xi-ta A1,2,Xiao TIAN1,2,Wen LI1,2,3()   

  1. 1.Key Laboratory of Advanced Forging & Stamping Technology and Science,Ministry of Education of China,Yanshan University,Qinhuangdao 066004,China
    2.Hebei Key Laboratory of Heavy Machinery Fluid Power Transmission and Control,Yanshan University,Qinhuangdao 066004,China
    3.State Key Laboratory of Intelligent Manufacturing of Advanced Construction Machinery,Xuzhou 221004,China
  • Received:2021-10-23 Online:2022-02-01 Published:2022-02-17
  • Contact: Wen LI E-mail:ljzhang@ysu.edu.cn;liwen9933@126.com

Abstract:

In order to obtain the relative optimal test configuration considering multiple optimization objectives in the optimization design of accelerated degradation test, a multi-objective optimization design method of constant stress accelerated degradation test is proposed. The accelerated degradation model is established based on gamma process, and the unknown parameters are solved by maximum likelihood estimation method. Considering the model fitting accuracy and life estimation accuracy, a multi-objective optimization model is constructed. The model is solved by NSGA-II, and a Pareto frontier set considering multiple optimization objectives is established. The relative proportion of each objective function in Pareto frontier set is calculated based on the value of single objective optimization objective function. On this basis, the Analytic Hierarchy Process is used to make expert decision on the accelerated degradation test to be carried out, and the weight value of each objective function is obtained. Taking the minimum error between the relative proportion of the objective function and the weight value of the objective function as the evaluation standard, the relatively optimal test configuration in the Pareto front set is selected. Finally, the effectiveness of the proposed method is verified by the accelerated degradation test data of carbon film resistance.

Key words: accelerated degradation test, multi-objective optimization design, Gamma process, analytic hierarchy process

CLC Number: 

  • TB114.3

Fig.1

Pareto frontier set of CSADT multi-objective optimization design"

Table 1

CSADT single objective optimization design results"

目标函数n1n2n3S1S2S3函数值
Iθ11154502001191.03×108
Avar(MTTF?)1431390200911.44×109

Table 2

Relative proportion of objective function"

方案n1n2n3S1S2S3R1R2
11431390200910.22960.7704
21441290200920.27870.7213
31341392200940.27890.7211
41351292200940.32120.6788
57617502001050.37520.6248
67617502001060.37580.6242
77617502001070.37630.6237
86717502001050.40570.5943
96717502001070.40650.5935
107716502001050.40780.5922
117716502001070.40860.5914
127815502001060.43720.5628
137815502001070.43750.5625
148814502001080.44000.5600
158913502001090.46640.5336
169912502001100.46890.5311
179912502001130.47000.5300
1891011502001100.49240.5076
1981111502001120.51190.4881
2091110502001080.51350.4865
2191110502001110.51400.4860
229129502001110.53350.4665
239129502001140.53400.4660
249138502001120.55150.4485
2510137502001100.55370.4463
2610137502001180.55480.4452
2710146502001140.57050.4295
2810155502001130.58560.4144
2910155502001140.58570.4143
3011154502001190.58840.4116

Table 3

Error calculation results"

方案n1n2n3S1S2S3μ1μ2
11431390200910.364 1700.205 823
21441290200920.228 1900.128 972
31341392200940.227 6400.128 659
41351292200940.110 5000.062 500
57617502001050.039 0000.022 100
67617502001060.040 7090.023 010
77617502001070.042 0940.023 790
86717502001050.123 5110.069 810
96717502001070.125 7270.071 060
107716502001050.129 3270.073 090
1 Hao H, Su C, Li C. LED lighting system reliability modeling and inference via random effects gamma process and copula function[J]. International Journal of Photoenergy, 2015(1): 1-8.
2 张建平, 张蓓. 基于三参数威布尔函数法的光电器件寿命快速评估模型及其应用[J]. 电子元件与材料, 2021, 40(2): 137-143.
Zhang Jian-ping, Zhang Bei. Rapid life assessment model of optoelectronic devices based on threeparameter weibull function method and its applications[J]. Electronic Components and Materials, 2021, 40(2): 137-143.
3 Sun L, Wang X, Zhang G, et al. Life assessment of organic coating based on accelerated de-gradation test and modeling[C]∥IEEE Interaional Conference on Industrial Engineering and Engineering Management, Singapore, 2015: 1644-1647.
4 Han D, Ng H. Comparison between constant-stress and step-stress accelerated life tests undertime constraint[J]. Naval Research Logistics, 2013, 60(7): 541-556.
5 Ge Z, Li X, Jiang T, et al. Optimal design forstep-stress accelerated degradation testing based on D-optimality[C]∥Reliability & Maintainability Symposium IEEE, Lake Buena Vista, 2011: 1-6.
6 Omshi E M, Shemehsavar S. Optimal design for accelerated degradation test based on D-optimality[J]. Iranian Journal of Science and Technology Transactions A Science, 2019, 43(4): 1811-1818.
7 Hu C, Lee M Y, Tang J. Optimum step-stress accelerated degradation test for wiener degradation process under constraints[J]. European Journal of Operational Research, 2015, 241(2): 412-421.
8 Si S, Zhai G F, Zheng B K, et al. Optimal design of accelerated degradation failure mechanism consistency discriminant test based on d-optimality[C]∥International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, Harbin, 2019: 967-972.
9 Tseng S T, Balakrishnan N, Tsai C C. Optimal step-stress accelerated degradation test plan for gamma degradation processes[J]. IEEE Transactions on Reliability, 2009, 58(4): 611-618.
10 Tsai C, Tseng S, Balakrishnan N. Optimal design for degradation tests based on gamma processes with random effects[J]. IEEE Transactions on Reliability, 2012, 61(2): 604-613.
11 Lim H, Yum B J. Optimal design of accelerated degradation tests based on wiener process models[J]. Journal of Applied Statistics, 2011, 38(2): 309-325.
12 Li X, Hu Y, Zhou J, et al. Bayesian step stress accelerated degradation testing design: amulti-objective pareto-optimal approach[J]. Reliability Engineering & System Safety, 2018, 171: 9-17.
13 Wang H, Zhao Y, Ma H B, et al. Optimal design of constant-stress accelerated degradation tests using the M-optimality criterion[J]. Reliability Engineering & System Safety, 2017, 164: 45-54.
14 Wu Z, Liu X, Guo B, et al. Multi-objective optimization design of constant stress accelerated degradation test using inverse gaussian process[J]. IEEE Access, 2019, 7: 28757-28768.
15 Saaty T L. The Analytic Hierarchy Process[M]. New York: McGraw-Hill International, 1980.
16 郑玉彬, 杨斌, 王晓峰, 等. 基于威布尔分布的电主轴加速寿命试验时间设计[J]. 吉林大学学报: 工学版, 2018, 48(3): 767-772.
Zheng Yu-bin, Yang Bin, Wang Xiao-feng, et al. Reliability evaluation model of tool competitive failure[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(3): 767-772.
17 李常有, 徐敏强, 郭耸, 等. 基于gamma过程及贝叶斯估计的实时可靠性评估[J]. 宇航学报, 2009, 30(4): 1722-1726.
Li Chang-you, Xu Min-Qiang, Guo Song, et al. Real time reliability evaluation based on gamma process and bayesian estimation[J]. Journal of Astronautics, 2009, 30(4): 1722-1726.
18 Sun B, Yan M C, Feng Q, et al. Gamma degradation process and accelerated model combined reliability analysis method for rubber O-rings[J]. IEEE Access, 2018, 6: 10581-10590.
19 唐圣金, 郭晓松, 周召发, 等. 步进应力加速退化试验的建模与剩余寿命估计[J]. 机械工程学报, 2014, 50(16): 33-40.
Tang Sheng-jin, Guo Xiao-song, Zhou Zhao-fa, et al. Modeling and residual life estimation of step stress accelerated degradation test[J]. Journal of Mechanical Engineering, 2014, 50(16): 33-40.
20 Lim H, Yum B J. Optimal design of accelerated degradation tests based on wiener process model[J]. Journal of Applied Statistics, 2011, 38(2): 309-325.
21 李洪洲, 杨兆军, 许彬彬, 等. 数控机床可靠性评估试验周期设计[J]. 吉林大学学报: 工学版, 2016, 46(5): 1520-1527.
Li Hong-zhou, Yang Zhao-jun, Xu Bin-bin, et al. Design of testing period for reliability assessment of NC machine tools[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(5): 1520-1527.
22 Ng H K T, Balakrishnan N, Chan P S. Optimal sample size allocation for tests with multiple levels of stress with extreme value regression[J]. Naval Research Logistics, 2007, 54(3): 237-249.
23 Meeker W Q, Luis A E. Statistical Methods for Reliability Data[M]. New York: John Wiley &Sons, 1998.
[1] Wei-zhi DONG,Shuang ZHANG,Fu ZHU. Evaluation of pavement performance of asphalt mixture based on extension analytic hierarchy process [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2137-2143.
[2] WANG Zhi-yuan, LI Guo-dong, WANG Yong-hua. Optimization decision model for bridge design based on AHP-TOPSIS [J]. 吉林大学学报(工学版), 2017, 47(2): 478-482.
[3] LI Xian-sheng, LI Ming-ming, REN You, YAN Jia-hui, CHEN Xiao-xia. Driver's fixation characteristics in different urban road alignments [J]. 吉林大学学报(工学版), 2016, 46(5): 1447-1452.
[4] ZHAO Ding-xuan, WANG Qian, ZHANG Zhu-xin. Extenics theory for reliability assessment of carrier helicopter based on analytic hierarchy process [J]. 吉林大学学报(工学版), 2016, 46(5): 1528-1531.
[5] LI Huan-li, GUO LI-hong, WANG Xin-zui, LI Xiao-ming, DONG Yue-fang, FANG Yan-chao. Iris recognition based on weighted Gabor filter [J]. 吉林大学学报(工学版), 2014, 44(01): 196-202.
[6] YAN Qing-dong, LIU Shu-cheng, WEI Wei, YANG Hui-bin. Evaluation for matching between hydrodynamic torque converter and engine based on improved radar chart method [J]. 吉林大学学报(工学版), 2013, 43(06): 1510-1516.
[7] CHI Xue-fen, WU Di, LIU Dan. IBP+MMBP/Geo/1/K vacation queuing system with threshold [J]. 吉林大学学报(工学版), 2013, 43(03): 781-787.
[8] LIU Ren-yun, YU Fan-hua. Robust optimal design for reliability based on analytic hierarchy process-particle swarm method [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 139-142.
[9] HAO Qing-bo, YANG Zhao-jun, CHEN Chuan-hai, CHEN Fei, LI Guo-fa. Reliability prediction for NC machine tool based on interval AHP [J]. , 2012, 42(04): 845-850.
[10] YU Fan-hua, LIU Ren-yun. Multi-objective reliability based on robust optimization design for vehicle leaf spring [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 226-230.
[11] SHEN Gui-xiang, SHAO Na, ZHANG Ying-zhi, HE Yu, WANG Xiao-feng. Customer satisfaction evaluation for numerically-controlled machine tools based on extension theory [J]. 吉林大学学报(工学版), 2011, 41(增刊1): 164-167.
[12] CHEN Yong, CHEN Xiao-kai, LIN Yi. Application of improved radar chart evaluation method on evaluation of automobile comprehensive performances [J]. 吉林大学学报(工学版), 2011, 41(6): 1522-1526.
[13] HAN Bao,WU Wen-fu,QUAN Long-zhe. Multi-objective optimization design and simulation on horizontal disk type weeding unit between seedlings [J]. 吉林大学学报(工学版), 2011, 41(03): 692-696.
[14] . Reliability evaluation of numerically -controlled machine tool
based on extenics theory
[J]. 吉林大学学报(工学版), 2011, 41(01): 106-0109.
[15] WANG Xiang-feng,HAN Wan-jin. Multi-objective aerodynamic optimal design for a transonic compressor rotor [J]. 吉林大学学报(工学版), 2010, 40(01): 299-0304.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!