1 |
Liu W, Anguelov D, Erhan D, et al. SSD: single shot multibox detector[C]∥European Conference on Computer Vision, Amsterdam, The Netherlands,2016: 21-37.
|
2 |
Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
|
3 |
Redmon J, Farhadi A. YOLOv3: an incremental improvement[J/OL].[2018-12-10]. .
|
4 |
李熙莹, 陆强, 张晓春, 等. 基于人车交互行为模型的上下客行为识别[J]. 中国公路学报, 2021, 34(7): 152-163.
|
|
Li Xi-ying, Lu Qiang, Zhang Xiao-chun, et al. Identification of on-off passenger behavior based on human-vehicle interaction model[J]. China Journal of Highway and Transport, 2021, 34(7): 152-163.
|
5 |
金立生, 郭柏苍, 王芳荣, 等. 基于改进YOLOv3的车辆前方动态多目标检测算法[J]. 吉林大学学报:工学版, 2021,51(4): 1427-1436.
|
|
Jin Li-sheng, Guo Bo-cang, Wang Fang-rong, et al. Vehicle forward dynamic multi-target detection algorithm based on improved YOLOv3[J]. Journal of Jilin University (Engineering and Technology Edition), 2021,51(4): 1427-1436.
|
6 |
姜迪, 刘慧, 李钰, 等.结合稠密特征映射的CT图像肿瘤分割模型[J]. 计算机辅助设计与图形学学报, 2021, 33(8): 1273-1286.
|
|
Jiang Di, Liu Hui, Li Yu, et al. Tumor segmentation model for CT images combined with dense feature mapping[J]. Journal of Computer-Aided Design & Graphics, 2021, 33(8): 1273-1286.
|
7 |
于博文, 吕明. 改进的YOLOv3算法及其在军事目标检测中的应用[J/OL]. [2021-11-03]..
|
8 |
詹光莉,刘辉, 杨路. 基于改进注意力W-Net的工业烟尘图像分割[J/OL]. [2021-11-03]..
|
9 |
Liu M, Wang X, Zhou A, et al. UAV-YOLO: small object detection on unmanned aerial vehicle perspective[J]. Sensors, 2020, 20(8): 2238.
|
10 |
Chen L, Zhang Z, Peng L. Fast single shot multibox detector and its application on vehicle counting system[J]. IET Intelligent Transport Systems, 2018, 12(10): 1406-1413.
|
11 |
Zhu J, Sun K, Jia S, et al. Urban traffic density estimation based on ultrahigh-resolution UAV video and deep neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(12): 4968-4981.
|
12 |
Gao P, Tian J, Tai Y, et al. Vehicle detection with bottom wnhanced retinaNet in aerial images[C]∥IEEE International Geoscience and Remote Sensing Symposium, Waikoloa Village,USA,2020: 1173-1176.
|
13 |
Misra D. Mish: a self regularized non-monotonic neural activation function[J/OL].[2020-12-10]. , 2020.
|
14 |
Huang G, Liu Z, Maaten L V D, et al. Densely connected convolutional networks[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,USA,2017: 2261-2269.
|
15 |
Yang X, Yang J, Yan J, et al. SCRDet: towards more robust detection for small, cluttered and rotated objects[C]∥ IEEE/CVF International Conference on Computer Vision, Seoul, South Korea,2019: 8231-8240.
|
16 |
Qian W, Yang X, Peng S, et al. Learning modulated loss for rotated object detection[J/OL].[2019-10-24]. .
|
17 |
Dai J, Qi H, Xiong Y, et al. Deformable convolutional networks[C]∥IEEE International Conference on Computer Vision, Venice, Italy, 2017: 764-773.
|
18 |
Fan H, Du D, Wen L, et al. VisDrone-MOT2020: the vision meets drone multiple object tracking challenge results[C]∥European Conference on Computer Vision, Online, 2020: 713-727.
|
19 |
Yu H, Li G, Zhang W, et al. The unmanned aerial vehicle benchmark: object detection, tracking and baseline[J]. International Journal of Computer Vision, 2020, 128(5): 1141-1159.
|
20 |
Wang J, Chen K, Yang S, et al. Region proposal by guided anchoring[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2019: 2965-2974.
|
21 |
Xu Y, Fu M, Wang Q, et al. Gliding vertex on the horizontal bounding box for multi-oriented object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(4): 1452 - 1459.
|
22 |
Wang J, Yang W, Li H-C, et al. Learning center probability map for detecting objects in aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5): 4307-4323.
|
23 |
Yang X, Liu Q, Yan J, et al. R3Det: refined single-stage detector with feature refinement for rotating object[J/OL].[2020-10-27]. .
|