Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (1): 154-161.doi: 10.13229/j.cnki.jdxbgxb20200755

Previous Articles     Next Articles

Relation domain and range completion method based on knowledge graph embedding

Jing-pei LEI1,2(),Dan-tong OUYANG1,2,Li-ming ZHANG1,2()   

  1. 1.College of Computer Science and Technology,Jilin University,Changchun 130012,China
    2.Key Laboratory of Symbolic Computation and Knowledge Engineering,Ministry of Education,Jilin University,Changchun 130012,China
  • Received:2020-10-05 Online:2022-01-01 Published:2022-01-14
  • Contact: Li-ming ZHANG E-mail:leijp15@mails.jlu.edu.cn;limingzhang@jlu.edu.cn

Abstract:

In this paper, we focus on completing the missing domain and range constraints in knowledge graphs and try to predict missing constraints by knowledge graph embedding models. Considering the structure of constraints completion problem, we introduce two efficient approaches, DCaT-T and DCaT-R, which are derived from translation-based knowledge graph embedding models TransE and RotatE. In particular both DCaT-T and DCaT-R exploit a two-stage training approach to improve the performance of the constraints predicting models. Experimental results show that both DCaT-T and DCaT-R are efficient than entity typing approach SDType, DCaT-T performs better than TransE-based entity typing model ConnectE and the two-stage learning approach can improve the performance of the models further.

Key words: artificial intelligence, knowledge graph, domain and range, constraints completion, knowledge graph embedding

CLC Number: 

  • TP391

Table 1

Facts data set"

数据集#Entities#Rel#Train#Valid#Test
FB15k14 9511345483 14250 00059 071
WN1840 94318141 44250005000
FB15k?23714 541237272 11517 53520 466
WN18RR40 5591186 83530343134

Table 2

Domain constraints data set"

数据集#C g(#Dom)#Train g#Validg#Test g
FB15k2690273 71016 05219 061
WN1836171 25490069028
FB15k?237474149 68957076736
WN18RR22103 50927412811

Table 3

Result of constraints completion on test dataset"

Data setmetricSDTypeDCaT-TDCaT-R
FB15kMR86.423.773.95
MRR0.4600.8250.815
Hits@10.3660.7610.746
Hits@30.4960.8690.863
Hits@100.6960.9460.944
WN18MR1.611.151.19
MRR0.9360.9760.968
Hits@10.9120.9650.955
Hits@30.9680.9830.977
Hits@100.9930.9960.996
FB15k?237MR10.75.3405.52
MRR0.5020.5430.545
Hits@10.3650.3650.375
Hits@30.5670.6590.649
Hits@100.7920.8920.879
WN18RRMR2.602.001.70
MRR0.7710.8020.828
Hits@10.7020.7160.729
Hits@30.7840.8600.915
Hits@100.9010.9900.993

Fig.1

Results of SDType and DCaT-T"

Table 4

Results of embedding models on FB15k"

metricConnectEDCaT?TDCaT?T (N)

DCaT?T

(MIX)

MR14.653.7703.794.18
MRR0.520.8250.8220.806
Hits@10.3970.7610.7550.734
Hits@30.5730.8690.8680.859
Hits@100.7870.9460.9450.943

Fig.2

Results of embedding models on FB15k"

1 Wang Q, Mao Z, Wang B, et al. Knowledge graph embedding: a survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12):2724⁃2743.
2 刘知远,孙茂松,林衍凯,等.知识表示学习研究进展[J]. 计算机研究与发展,2016,53(2):247-261.
Liu Zhi-yuan, Sun Mao-song, Lin Yan-kai, et al. Knowledge representation learning: a review[J]. Journal of Computer Research and Development, 2016, 53(2): 247-261.
3 Krompaß D, Baier S, Tresp V. Type-constrained representation learning in knowledge graphs[C]∥Proceedings of the 14th International Semantic Web Conference, Osaka, Japan,2015: 640-655.
4 Lv X, Hou L, Li J, et al. Differentiating concepts and instances for knowledge graph embedding[C]∥Proceedings of the EMNLP, Brussels, Belgium,2018:1971-1979.
5 Hao J, Chen M, Yu W, et al. Universal representation learning of knowledge bases by jointly embedding instances and ontological concepts[C]∥Proceedings of the 25th ACM SIGKDD, New York,USA,2019:1709-1719.
6 Lei J, Ouyang D, Liu Y. Adversarial knowledge representation learning without external model[J]. IEEE Access, 2017, 29(12):2724⁃2743.
7 Bollacker K, Evans C, Paritosh P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]∥ Proceedings of the SIGMOD Conference, San Francisco, USA,2008: 1247-1249.
8 Miller G A. WordNet: a lexical database for English[J]. Communications of the Acm, 1995, 38(11):39-41.
9 Bordes A, Usunier N. Translating embeddings for modeling multi-relational data[C]∥Proceedings of the 27th Annual Conference on Neural Information Processing Systems, Cambridge, USA, 2014:434-449.
10 Sun Z, Deng Z, Nie L, et al. RotatE: knowledge graph embedding by relational rotation in complex space[C]∥ Proceedings of the 7th International Conference on Learning Representations, Bloomington Indiana, USA, 2019: No.978-0-8058-6174-7.
11 Paulheim H, Bizer C. Type inference on noisy RDF data[C]∥Proceedings of the 12th International Semantic Web Conference, Sydney Australia, 2013:510-525.
12 Zhao Y, Zhang A, Xie R, et al. Connecting embeddings for knowledge graph entity typing[C]∥Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online,2020:6419-6428.
13 Brickley D, Guha R V. RDF Schema1.1 [DB/OL]. [2020-09-08]. .
14 Lehmann J, Isele R, Jakob M, et al. DBpedia - a large‒scale, multilingual knowledge base extracted from Wikipedia[J]. Semantic Web, 2015, 6(2): 167-195.
15 Liu H, Wu Y, Yang Y. Analogical inference for multi-relational embeddings[C]∥Proceedings of the 34th International Conference on Machine Learning, Sydney,Australia, 2017: 2168-2178.
16 Demers T, Minervini P, Stenetorp P, et al. Convolutional 2D knowledge graph embeddings[C]∥ Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New York, USA, 2018:1811-1818.
17 Zhang S, Tay Y, Yao L, et al. Quaternion knowledge graph embeddings[C]∥ Proceedings of the 33rd Annual Conference on Neural Information Processing Systems, Vancouver,Canada,2019:2731-2741.
18 Liu H, Wu Y, Yang Y. Learn to grow: a continual structure learning framework for overcoming catastrophic forgetting[C]∥ Proceedings of the 36th International Conference on Machine Learning, California, USA, 2019:3925-3934.
[1] Zhi-hua LI,Ye-chao ZHANG,Guo-hua ZHAN. Realtime mosaic and visualization of 3D underwater acoustic seabed topography [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 180-186.
[2] Yan-lei XU,Run HE,Yu-ting ZHAI,Bin ZHAO,Chen-xiao LI. Weed identification method based on deep transfer learning in field natural environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2304-2312.
[3] Yong YANG,Qiang CHEN,Fu-heng QU,Jun-jie LIU,Lei ZHANG. SP⁃k⁃means-+ algorithm based on simulated partition [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1808-1816.
[4] Ya-hui ZHAO,Fei-yang YANG,Zhen-guo ZHANG,Rong-yi CUI. Korean text structure discovery based on reinforcement learning and attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1387-1395.
[5] Yan-hua DONG,Jing-wei LIU,Jing-hua ZHAO,Liang LI,Fang-xi XIE. Real-time torque tracking control based on BPNN online learning prediction model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1405-1413.
[6] Fu LIU,Yi-xin LIANG,Tao HOU,Yang SONG,Bing KANG,Yun LIU. Improvement of fuzzy c-harmonic mean algorithm on unbalanced data [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1447-1453.
[7] Fu-hua SHANG,Mao-jun CAO,Cai-zhi WANG. Local outlier data mining based on artificial intelligence technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 692-696.
[8] Hai-ying ZHAO,Wei ZHOU,Xiao-gang HOU,Xiao-li ZHANG. Double-layer annotation of traditional costume images based on multi-task learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 293-302.
[9] Yang DUAN,Li HOU,Song LENG. Building and application of metal cutting knowledge graph [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 122-133.
[10] Dan-tong OUYANG,Cong MA,Jing-pei LEI,Sha-sha FENG. Knowledge graph embedding with adaptive sampling [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 685-691.
[11] Yi-bin LI,Jia-min GUO,Qin ZHANG. Methods and technologies of human gait recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 1-18.
[12] Qian XU,Ying LI,Gang WANG. Pedestrian-vehicle detection based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1661-1667.
[13] Wan-fu GAO,Ping ZHANG,Liang HU. Nonlinear feature selection method based on dynamic change of selected features [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1293-1300.
[14] Dan⁃tong OUYANG,Jun XIAO,Yu⁃xin YE. Distant supervision for relation extraction with weakconstraints of entity pairs [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 912-919.
[15] GU Hai-jun, TIAN Ya-qian, CUI Ying. Intelligent interactive agent for home service [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1578-1585.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .