Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (2): 346-354.doi: 10.13229/j.cnki.jdxbgxb20210087

Previous Articles     Next Articles

Failure comparison of single and double lap joints after high temperature aging

Deng-feng WANG(),Hong-li CHEN,Jing-xin NA,Xin CHEN()   

  1. State Key Laboratory of Automotive Simulation and Control,Jilin University,Changchun 130022,China
  • Received:2021-01-23 Online:2023-02-01 Published:2023-02-28
  • Contact: Xin CHEN E-mail:caewdf@jlu.edu.cn;cx@jlu.edu.cn

Abstract:

In order to study the failure of single and double lap joints after high temperature aging, a batch of Al-CFRP single lap joints and Al-CFRP-Al double lap joints were fabricated. The quasi-static tensile tests were carried out at -40, 20 and 80°C after aging at 80°C for 0, 10, 20 and 30 days. The single regression and binary regression models were established to analyze summarize the failure strength and failure forms of lap joints and reveal the aging mechanism. The results show that: with the increase of aging time and service temperature, the failure strength of the joint decreases significantly, and the service temperature has a greater influence on the failure strength than the aging time, and the correlation is higher. The failure strength of double lap joint is significantly higher than that of single lap joint. In engineering application, double lap joint can be used to replace single lap joint to obtain greater bearing capacity under certain conditions. With the increase of aging time, the failure mode of lap joint changes from cohesive failure to mixed failure, accompanied by fiber tearing. The longer the aging time is, the more obvious the fiber tearing is. The SEM observation shows that the aging CFRP resin decreases significantly, and the bonding strength between CFRP matrix and resin decreases, which leads to the fiber tearing phenomenon more easily.

Key words: vehicle engineering, high temperature aging, service temperature, regression analysis

CLC Number: 

  • U463.82

Table 1

Property parameters of CFRP"

材 料Ex /GPaEy /GPaGxy /GPavxy

单向-CFRP

斜纹-CFRP

125±12

55±5

10±2

55±5

7±0.6

4±0.5

0.07

0.14

Fig.1

Geometric dimension diagram of lap joint"

Fig.2

Tensile test diagram of lap joints"

Fig.3

DSC test results of adhesive before and after aging"

Fig.4

Failure strength of single and double lap joints"

Fig.5

Relationship between average failure strength and aging time of single and double lap joints at different service temperatures"

Table 2

Goodness of fit at different service temperatures"

服役

温度/°C

二次多项式函数指数函数
单搭接双搭接单搭接双搭接
-40°C0.98250.99660.99100.9896
20°C0.97810.98770.97490.9845
80°C0.99790.99860.97210.9747

Table 3

Significance test results of regression model"

项目名称TP
常量129.297160.11<0.001<0.001
D-6.561-4.9620.0010.003
T-9.895-9.298<0.001<0.001
DT0.86-1.2210.4230.268
D21.383-0.5100.2160.628
T2-0.17-0.3710.870.723
R2=0.991R2adj=0.984F=139.696P<0.001
R2=0.993R2adj=0.987F=165.879P<0.001

Table 4

Pearson correlation test"

项目名称平均失效强度
D-0.683-0.681
T-0.722-0.726
DT-0.705-0.751
D2-0.640-0.658
T2-0.550-0.557

Table 5

Prediction results of aging for 15 days"

试验条件试验值/MPa理论值/MPa相对误差/%
15天-40℃14.3123.0413.9622.162.453.82
15天20℃11.7621.6012.8720.689.444.26
15天80℃11.2618.2111.7419.104.264.89

Fig.6

Failure section of single and double lap joints at different service temperatures"

Fig.7

Morphology of CFRP before and after aging"

1 , 轻型汽车污染物排放限值及测量方法(中国第六阶段) [S].
2 谭伟, 那景新, 任俊铭, 等. 高低温老化对碳纤维增强复合材料层间力学性能的影响[J]. 吉林大学学报:工学版, 2020, 50(4): 1324-1332.
Tan Wei, Na Jing-xin, Ren Jun-ming, et al. Effect of high and low temperature aging on interlaminar mechanical properties of carbon fiber reinforced composites[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(4): 1324-1332.
3 Witik R A, Payet J, Michaud V, et al. Assessing the life cycle costs and environmental performance of lightweight materials in automobile applications[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(11): 1694-1709.
4 慕文龙,那景新,谭伟,等.基于FTIR分析的CFRP-铝合金粘接接头剩余强度预测[J].吉林大学学报:工学版, 2021, 51(1): 139-146.
Mu Wen-long, Na Jing-xin, Tan Wei, et al. Residual strength prediction of adhesive CFRP-aluminum alloy adhesively bonded joint based on FTIR analysis[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 139-146.
5 Liu Q, Lin Y, Zong Z, et al. Lightweight design of carbon twill weave fabric composite body structure for electric vehicle[J]. Composite Structures, 2013, 97: 231-238.
6 Budhe S, Banea M D, De Barros S, et al. An updated review of adhesively bonded joints in composite materials[J]. International Journal of Adhesion and Adhesives, 2017, 72: 30-42.
7 Groche P, Wohletz S, Brenneis M, et al. Joining by forming—a review on joint mechanisms, applications and future trends[J]. Journal of Materials Processing Technology, 2014, 214(10): 1972-1994.
8 Costa M, Viana G, da Silva L F M, et al. Environmental effect on the fatigue degradation of adhesive joints: a review[J]. The Journal of Adhesion, 2017, 93(1/2): 127-146.
9 秦国锋,那景新,慕文龙,等.高温老化对CFRP/铝合金粘接接头失效的影响[J]. 吉林大学学报:工学版, 2019, 49(4): 1063-1071.
Qin Guo-feng, Na Jing-xin, Mu Wen-long,et al.Degradation failure of adhesively bonded CFRP/ aluminum alloy subjected to high temperature environment[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1063-1071.
10 Pecora M, Pannier Y, Lafarie-Frenot M C, et al. Effect of thermo-oxidation on the failure properties of an epoxy resin[J]. Polymer Testing, 2016, 52: 209-217.
11 Wolfrum J, Eibl S, Lietch L. Rapid evaluation of long-term thermal degradation of carbon fibre epoxy composites [J]. Composites Science and Technology, 2009, 69(3/4): 523-530.
12 Yao M, Zhu D, Yao Y, et al. Experimental study on basalt FRP/steel single-lap joints under different loading rates and temperatures[J]. Composite Structures, 2016, 145: 68-79.
13 Qin G F, Na J X, Mu W L, et al. Effect of continuous high temperature exposure on the adhesive strength of epoxy adhesive, CFRP and adhesively bonded CFRP-aluminum alloy joints[J]. Composites Part B:Engineering, 2018, 154: 43-55.
14 Cassidy P E, Johnson J M, Locke C E. The relationship of glass transition temperature to adhesive strength[J]. The Journal of Adhesion, 1972, 4(3): 183-191.
15 Zhang Y, Adams R D, da Silva L F M. Effects of curing cycle and thermal history on the glass transition temperature of adhesives[J]. The Journal of Adhesion, 2014, 90(4): 327-345.
16 Banea M D, de Sousa F S M, da Silva L F M,et al. Effects of temperature and loading rate on the mechanical properties of a high temperature epoxy adhesive[J]. Journal of Adhesion Science and Technology, 2011, 25(18): 2461-2474.
17 Firmo J P, Roquette M G, Correia J R, et al. Influence of elevated temperatures on epoxy adhesive used in CFRP strengthening systems for civil engineering applications[J]. International Journal of Adhesion and Adhesives, 2019, 93: 102333.
18 孙靖先,葛美周,赵香国,等.粘接在轨道交通车辆上的应用进展[J]. 机车车辆工艺, 2020(2): 15-16, 23.
Sun Jing-xian, Ge Mei-zhou, Zhao Xiang-guo,et al. Application progress of adhesive bonding in rail transit vehicles[J]. Locomotive & Rolling Stock Technology, 2020(2): 15-16, 23.
19 Zamani P, Jaamialahmadi A, da Silva L F M. The influence of GNP and nano-silica additives on fatigue life and crack initiation phase of Al-GFRP bonded lap joints subjected to four-point bending[J]. Composites Part B: Engineering, 2021, 207: 108589.
20 Lin Y C, Chen X, Zhang H J, et al. Effects of hygrothermal aging on epoxy-based anisotropic conductive film[J]. Materials Letters, 2006, 60(24): 2958-2963.
21 Lowe A, Fox B, Otieno-Alego V. Interfacial ageing of high temperature carbon/bismaleimide composites[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(10): 1289-1292.
22 Skourlis T P, McCullough R L. The effect of temperature on the behavior of the interphase in polymeric composites[J]. Composites Science and Technology, 1993, 49(4): 363-368.
23 陈仲堂,赵德平,李彦平.数理统计[M].北京:化学工业出版社, 2014.
24 Buch X, Shanahan M E R. Influence of the gaseous environment on the thermal degradation of a structural epoxy adhesive[J]. Journal of Applied Polymer Science, 2000, 76(7): 987-992.
25 Na J, Mu W, Qin G, et al. Effect of temperature on the mechanical properties of adhesively bonded basalt FRP-aluminum alloy joints in the automotive industry [J]. International Journal of Adhesion and Adhesives, 2018, 85: 138-148.
26 Liu S, Cheng X, Zhang Q, et al. An investigation of hygrothermal effects on adhesive materials and double lap shear joints of CFRP composite laminates[J]. Composites Part B: Engineering, 2016, 91: 431-440.
[1] Ke-yong WANG,Da-tong BAO,Su ZHOU. Data-driven online adaptive diagnosis algorithm towards vehicle fuel cell fault diagnosis [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2107-2118.
[2] Qi-ming CAO,Hai-tao MIN,Wei-yi SUN,Yuan-bin YU,Jun-yu JIANG. Hydrothermal characteristics of proton exchange membrane fuel cell start⁃up at low temperature [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2139-2146.
[3] Hai-lin KUI,Ze-zhao WANG,Jia-zhen ZHANG,Yang LIU. Transmission ratio and energy management strategy of fuel cell vehicle based on AVL⁃Cruise [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2119-2129.
[4] Yan LIU,Tian-wei DING,Yu-peng WANG,Jing DU,Hong-hui ZHAO. Thermal management strategy of fuel cell engine based on adaptive control strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2168-2174.
[5] Cheng LI,Hao JING,Guang-di HU,Xiao-dong LIU,Biao FENG. High⁃order sliding mode observer for proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2203-2212.
[6] Pei ZHANG,Zhi-wei WANG,Chang-qing DU,Fu-wu YAN,Chi-hua LU. Oxygen excess ratio control method of proton exchange membrane fuel cell air system for vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1996-2003.
[7] Xun-cheng CHI,Zhong-jun HOU,Wei WEI,Zeng-gang XIA,Lin-lin ZHUANG,Rong GUO. Review of model⁃based anode gas concentration estimation techniques of proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1957-1970.
[8] Yao-wang PEI,Feng-xiang CHEN,Zhe HU,Shuang ZHAI,Feng-lai PEI,Wei-dong ZHANG,Jie-ran JIAO. Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2014-2024.
[9] Guang-di HU,Hao JING,Cheng LI,Biao FENG,Xiao-dong LIU. Multi⁃objective sliding mode control based on high⁃order fuel cell model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2182-2191.
[10] Feng-xiang CHEN,Qi WU,Yuan-song LI,Tian-de MO,Yu LI,Li-ping HUANG,Jian-hong SU,Wei-dong ZHANG. Matching,simulation and optimization for 2.5 ton fuel cell/battery hybrid forklift [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2044-2054.
[11] Xiao-hua WU,Zhong-wei YU,Zhang-ling ZHU,Xin-mei GAO. Fuzzy energy management strategy of fuel cell buses [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2077-2084.
[12] Qing GAO,Hao-dong WANG,Yu-bin LIU,Shi JIN,Yu CHEN. Experimental analysis on spray mode of power battery emergency cooling [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1733-1740.
[13] Kui-yang WANG,Ren HE. Recognition method of braking intention based on support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1770-1776.
[14] Jun-cheng WANG,Lin-feng LYU,Jian-min LI,Jie-yu REN. Optimal sliding mode ABS control for electro⁃hydraulic composite braking of distributed driven electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1751-1758.
[15] Han-wu LIU,Yu-long LEI,Xiao-feng YIN,Yao FU,Xing-zhong LI. Multi⁃point control strategy optimization for auxiliary power unit of range⁃extended electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1741-1750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[6] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[7] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[8] Yang Qing-fang, Chen Lin . Division approach of traffic control work zone[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[9] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[10] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .