1 |
Zhang Yong, Chen Zeng-qiang, Zhang Xing-hui, et al. A novel control scheme for quadrotor UAV based upon active disturbance rejection control[J]. Aerospace Science and Technology, 2018, 79: 601-609.
|
2 |
Hu Jun-yan, Niu Han-lin, Carrasco J, et al. Fault-tolerant cooperative navigation of networked UAV swarms for forest fire monitoring[J]. Aerospace Science and Technology, 2022, 123(2): No.107494.
|
3 |
Luis A B, Eduardo L C, Mario G S, et al. Towards a standard design model for quad-rotors: a review of current models, their accuracy and a novel simplified model[J]. Progress in Aerospace Sciences, 2017, 95: 1-23.
|
4 |
Liu Yang, Yao De-yin, Wang Li-jie, et al. Distributed adaptive fixed-time robust platoon control for fully heteroge-neous vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 53(1): 264-274.
|
5 |
Liu Yang, Li Hong-yi, Zuo Zong-yu, et al. An overview of finite/fixed-time control and its application in engineering systems[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(12): 2106-2120.
|
6 |
Zhou Si-cheng, Guo Ke-xin, Yu Xiang, al et, Fixed-time observer based safety control for a quadrotor UAV[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 2815-2825.
|
7 |
Kanellakopoulos I, Kokotovic P V. Systematic design of adaptive controllers for feedback linearizable systems[C]∥1991 American Control Conference, Boston, America, 1991: 1241-1253.
|
8 |
Simone M, Guida D. Control design for an under-actuated UAV model[J]. FME Transactions, 2018, 46(4): 443-452.
|
9 |
Sarwar S, Rehman S U. Mathematical modelling of unmanned aerial vehicles[J]. Mehran University Research Journal of Engineering and Technology, 2013, 32(4): 615-622.
|
10 |
Saidi E, Hammi Y, Douik A. Modelling and predictive control of an inverted pendulum system by MLD approach: multivariable case[J]. International Journal of Modelling, Identification and Control, 2017, 27(1): 40-48.
|
11 |
Masters S E, Challis J H. Increasing the stability of the spring loaded inverted pendulum model of running with a wobbling mass[J]. Journal of Biomechanics, 2021, 123: No.110527.
|
12 |
Labbadi M, Cherkaoui M. Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV[J]. Aerospace Science and Technology, 2019, 93: No.105306.
|
13 |
Chen Fu-yang, Jiang Rong-qiang, Zhang Kang-kang, et al. Robust backstepping sliding-mode control and observer-based fault estimation for a quadrotor UAV[J]. IEEE Transactions on Industrial Electronics, 2016, 63(8): 5044-5056.
|
14 |
Basri M A M. Robust backstepping controller design with a fuzzy compensator for autonomous hovering quadrotor UAV[J]. Transactions of Electrical Engineering, 2018, 42(3): 379-391.
|
15 |
Swaroop D, Hedrick J K, Yip P P, et al. Dynamic surface control for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(10): 1893-1899.
|
16 |
Fu Chun-yang, Hong Wei, Lu Hui-qiu, et al. Adaptive robust backstepping attitude control for a multi-rotor unmanned aerial vehicle with time-varying output constraints[J]. Aerospace Science and Technology, 2018, 78: 593-603.
|
17 |
Ding Chen, Ma Li, Ding Shi-hong. Second-order sliding mode controller design with mismatched term and time-varying output constraint[J]. Applied Mathematics and Computation, 2021, 407(2): No.126331.
|
18 |
Ngo K B, Mahony R, Jiang Z P. Integrator backstepping using barrier functions for systems with multiple state constraints[C]∥Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 2005: 8306-8312.
|
19 |
Cui Lei, Hou Xiu-ying, Zuo Zhi-qiang, et al. An adaptive fast super-twisting disturbance observer-based dual closed-loop attitude control with fixed-time convergence for UAV[J]. Journal of the Franklin Institute, 2022, 359(6): 2514-2540.
|
20 |
Alattas K A, Mofid O, Alanazi A K, et al. Barrier function adaptive nonsingular terminal sliding mode control approach for quad-rotor unmanned aerial vehicles[J]. Sensors, 2022, 22(3): 909-909.
|
21 |
Dasgupta R, Roy S B, Bhasin S. Barrier-lyapunov function based dynamic surface control of quad-rotorcraft[J]. IFAC Papers OnLine, 2020, 53(2): 9378-9383.
|
22 |
Hou Zhong-sheng, Wang Zhuo. From model-based control to data-driven control: survey, classification and perspective[J]. Information Sciences, 2013, 235: 3-35.
|
23 |
Jiang Yu, Jiang Zhong-ping. Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics[J]. Automatica, 2012, 48(10): 2699-2704.
|
24 |
Ren Bei-bei, Zhong Qing-chang, Chen Jin-hao.Robust control for a class of nonaffine nonlinear systems based on the uncertainty and disturbance estimator[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5881-5888.
|
25 |
Zhong Qing-chang, Rees D. Control of uncertain LTI systems based on an uncertainty and disturbance estimator[J] Journal of Dynamic Systems, Measurement, and Control, 2004, 126(4): 905-910.
|
26 |
Sanz R, Garcia P, Zhong Qing-chang, et al. Control of disturbed systems with measurement delays: application to quadrotor vehicles[C]∥23rd Mediterranean Conference on Control and Automation, Torremolinos, Spain, 2015: 927-932.
|
27 |
周来宏, 窦景欣, 张居乾, 等. 基于改进反步法的四旋翼无人机轨迹跟踪控制[J]. 东北大学学报: 自然科学版, 2018, 39(1): 66-70.
|
|
Zhou Lai-hong, Dou Jing-xin, Zhang Ju-qian, et al. Trajtecory tracking control for a quadrotor UAV based on improved backstepping[J]. Journal of Northeastern University (Nature Science), 2018, 39(1): 66-70.
|
28 |
鲜斌, 李杰奇, 古训.基于非线性扰动观测器的无人机地面效应补偿[J].吉林大学学报: 工学版, 2022, 52(8): 1926-1933.
|
|
Xian Bin, Li Jie-qi, Gu Xun.Ground effects compensation for an unmanned aerial vehicle via nonlinear disturbance observer[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(8): 1926-1933.
|
29 |
Han Jing-qing. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906.
|
30 |
Qi Guo-yuan, Li Xia, Chen Zeng-qiang. Problems of extended state observer and proposal of compensation function observer for unknown model and application in UAV[J]. IEEE Transactions on Systems, Man and Cybernetics: Systems, 2022, 52(5): 2899-2910.
|
31 |
李霞, 齐国元, 郭曦彤, 等. 高阶微分反馈控制及在四旋翼飞行器中的应用[J]. 航空学报, 2022, 43(12): No.326047.
|
|
Li Xia, Qi Guo-yuan, Guo Xi-tong, et al. High-order differential feedback control and its application in quadrotor[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): No.326047.
|
32 |
Beal T R. Digital simulation of atmospheric turbulence for dryden and von karman models[J]. Journal of Guidance, Control, and Dynamics, 1993, 16(1): 132-138.
|