吉林大学学报(工学版) ›› 2011, Vol. 41 ›› Issue (01): 41-0045.

• paper • Previous Articles     Next Articles

Pedestrian detection based on improved Gaussian mixture model

LI Juan1,SHAO Chun-fu1,YANG Li-ya2   

  1. 1.Key Laboratory for Urban Transportation Complex Systems Theory and Technology of Ministry of Education,Beijing Jiaotong University,Beijing 100044,China;2.School of Public Administration, Renmin University of China, Beijing 100872, China
  • Received:2009-01-01 Online:2011-01-01 Published:2011-01-01

Abstract:

Aiming at the peculiarity of pedestrian in the road traffic, an effective pedestrian detection method was proposed based on an improved Gaussian mixture model(GMM) in 3 aspects: parameter updating, background estimation and foreground segmentation. The possibility of misjudging the static foreground as the background was reduced using a parameter updating model based on the image segmentation. The time of the foreground merging into the background was controlled applying the adjustment scheme of foreground merging time.The foreground segmentation condition was optimized by introducing the concept of average weight. The test results showed that the improved algorithm is better than the traditional GMM. It is characterized by good robustness and adaptability, able to detect the slow-moving even static pedestrian.

Key words: engineering of communications and transportation system, intelligent transportation system, pedestrian detection, background extraction, Gaussian mixture model(GMM)

CLC Number: 

  • U491.1
[1] CHEN Yong-heng,LIU Fang-hong,CAO Ning-bo. Analysis of conflict factors between pedestrians and channelized right turn vehicles at signalized intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1669-1676.
[2] LIU Xiang-yu, YANG Qing-fang, KUI Hai-lin. Traffic guidance cell division based on random walk algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1380-1386.
[3] LIU Zhao-hui, WANG Chao, LYU Wen-hong, GUAN Xin. Identification of data characteristics of vehicle running status parameters by nonlinear dynamic analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1405-1410.
[4] LUAN Xin, DENG Wei, CHENG Lin, CHEN Xin-yuan. Mixed Logit model for understanding travel mode choice behavior of megalopolitan residents [J]. 吉林大学学报(工学版), 2018, 48(4): 1029-1036.
[5] ZHAO Hong-wei, LIU Yu-qi, DONG Li-yan, WANG Yu, LIU Pei. Dynamic route optimization algorithm based on hybrid in ITS [J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[6] CHEN Yong-heng, LIU Xin-shan, XIONG Shuai, WANG Kun-wei, SHEN Yao, YANG Shao-hui. Variable speed limit control under snow and ice conditions for urban expressway in junction bottleneck area [J]. 吉林大学学报(工学版), 2018, 48(3): 677-687.
[7] WANG Zhan-zhong, LU Yue, LIU Xiao-feng, ZHAO Li-ying. Improved harmony search algorithm on truck scheduling for cross docking system [J]. 吉林大学学报(工学版), 2018, 48(3): 688-693.
[8] LI Zhi-hui, HU Yong-li, ZHAO Yong-hua, MA Jia-lei, LI Hai-tao, ZHONG Tao, YANG Shao-hui. Locating moving pedestrian from running vehicle [J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[9] CHEN Song, LI Xian-sheng, REN Yuan-yuan. Adaptive signal control method for intersection with hook-turn buses [J]. 吉林大学学报(工学版), 2018, 48(2): 423-429.
[10] SU Shu-jie, HE Lu. Transient dynamic congestion evacuation model of pedestrian at walk traffic planning crossroads [J]. 吉林大学学报(工学版), 2018, 48(2): 440-447.
[11] WANG Zhan-zhong, ZHAO Li-ying, JIAO Yu-Ling, CAO Ning-bo. Social force model of pedestrian-bike mixed flow at signalized crosswalk [J]. 吉林大学学报(工学版), 2018, 48(1): 89-97.
[12] HOU Xian-yao, CHEN Xue-wu. Use of public transit information market segmentation based onattitudinal factors [J]. 吉林大学学报(工学版), 2018, 48(1): 98-104.
[13] GAO Kun, TU Hui-zhao, SHI Heng, LI Zhen-fei. Effect of low visibility in haze weather condition on longitudinal driving behavior in different car-following stages [J]. 吉林大学学报(工学版), 2017, 47(6): 1716-1727.
[14] WEI Li-ying, CUI Yu-feng, WEI Jia-rong. Cellular automata model based on local maximum entropy lane-changing rules for electric bicycle flow [J]. 吉林大学学报(工学版), 2017, 47(5): 1436-1445.
[15] YAO Rong-han, ZHANG Xiao-tong, LIAN Lian. Optimization model for controlling reversible approach lanes at signalized intersections [J]. 吉林大学学报(工学版), 2017, 47(4): 1048-1054.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!