吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (2): 446-451.doi: 10.13229/j.cnki.jdxbgxb201702014

Previous Articles     Next Articles

Effect of dehydration on shear strength properties of compacted clayey soil

LIU Han-bing1, ZHANG Hu-zhu1, 2, WANG Jing2   

  1. 1.College of Transportation, Jilin University, Changchun 130022, China;
    2.School of Traffic Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
  • Received:2016-03-01 Online:2017-03-20 Published:2017-03-20

Abstract: In order to access the performance of compacted soil of highway subgrade in arid and semiarid regions during the service period, the shear strength properties of engineering clayed soil at different dehydration levels were studied by triaxial compression test. The effect of the water loss rate on the shear strength parameters and on the shear strength was studied, and the effect mechanism was analyzed. Taking the water loss rate into consideration, the relationship equations of cohesion, internal friction angle and shear strength were established. Results show that the dehydration of the compacted clayed soil can remarkably improve its shear strength parameters and shear strength. The cohesion, internal friction angle and shear strength all increase with the water loss rate. The cohesion ad shear strength are exponential functions of the water loss rate, but the internal friction angle is a quadratic function of the water loss rate. Dehydration of compacted clayey soil can enhance the load bearing capacity and stability of highway subgrade. This study may provide theoretical and technical reference for the design and construction of clayey soil subgrade in arid and semiarid regions.

Key words: road engineering, shear strength, triaxial compression test, compacted clayey soil, water loss rate, cohesion, internal friction angle

CLC Number: 

  • U416
[1] 罗烈日,郑俊杰.不同模式下抗剪强度参数对路堤稳定性的影响[J].土木工程与管理学报,2012, 29(4):50-54.
Luo Lie-ri, Zheng Jun-jie. Effects of shear strength on embankment stability under different patterns[J]. Journal of Civil Engineering and Management, 2012, 29(4): 50-54.
[2] 梅岭,梅国雄,易宗发. K 0 ≠1时的地基临塑载荷和临界载荷近似计算公式[J].计算力学学报,2010, 27(6):1090-1095.
Mei Ling, Mei Guo-xiong, Yi Zong-fa. Approximate formulas of critical edge pressure and critical load of subsoil with K 0 ≠1[J]. Chinese Journal of Computational Mechanics, 2010, 27(6): 1090-1095.
[3] 赵吉坤,温娇娇.填土含水率对挡土墙土压力影响的实验分析[J].土木建筑与环境工程,2012(增刊2):155-160.
Zhao Ji-kun, Wen Jiao-jiao. Analysis of the effect of filling soil moisture content to the gravity retaining wall's performance[J]. Journal of Civil, Architectural & Environmental Engineering, 2012(Sup.2): 155-160.
[4] 刘寒冰,王静,魏海斌,等.冻融循环下路基土抗剪强度与塑性指数相关性[J].吉林大学学报:工学版,2011(增刊2):149-152.
Liu Han-bing, Wang Jing, Wei Hai-bin, et al. Correlation of subgrade soil shear strength and plasticity index under freeze-thaw cycles[J]. Journal of Jilin University (Engineering and Technology Edition), 2011(Sup.2): 149-152.
[5] 胡梦玲,姚海林,刘杰,等.干密度对路基性能的影响研究[J].岩土力学,2012, 33(增刊2):91-97.
Hu Meng-ling, Yao Hai-lin, Liu Jie, et al. Research on influence of dry density on subgrade performance[J]. Rock and Soil Mechanics, 2012, 33(Sup.2): 91-97.
[6] 贾亮,朱彦鹏,朱鋆川,等.兰州马兰、离石压实黄土抗剪强度影响因素探讨[J].岩土工程学报,2014(增刊2):120-124.
Jia Liang, Zhu Yan-peng, Zhu Yun-chuan, et al. Influencing factors for shear strength of Malan and Lishi compacted loess in Lanzhou[J]. Chinese Journal of Geotechnical Engineering, 2014(Sup.2): 120-124.
[7] 骆以道.考虑饱和度的压实填土抗剪强度研究[J].岩土力学,2011, 32(10):3143-3147.
Luo Yi-dao. Research on shear strength of compacted soils considering saturation degree[J]. Rock and Soil Mechanics, 2011, 32(10): 3143-3147.
[8] 袁俊平,詹斌,陈胜超,等.含水率和压实度对路基填土力学特性的影响[J].水利与建筑工程学报,2013, 11(2):98-102.
Yuan Jun-ping, Zhan Bin, Chen Sheng-chao, et al. Effects of water content and compaction degree on mechanical characteristics of roadbed[J]. Journal of Water Resources and Architectural Engineering, 2013, 11(2): 98-102.
[9] 王来贵,张鹏,李喜林.含水率及压实度对排土场岩土抗剪强度的影响[J].辽宁工程技术大学学报:自然科学版,2015(6):699-703.
Wang Lai-gui, Zhang Peng, Li Xi-lin. Water content and compactness influence on waste disposal site rock shearing strength[J]. Journal of Liaoning Technical University(Natural Science), 2015(6): 699-703.
[10] 王娟娟,张秀丽,王铁行.考虑含水量和密度影响的压实黄土抗剪强度特性研究[J].西安建筑科技大学学报:自然科学版,2014, 46(5):687-691.
Wang Juan-juan, Zhang Xiu-li, Wang Tie-hang. The shear strength research of compacted loess considering the impact of moisture content and dry density[J]. Journal of Xi'an University of Architecture & Technology(Natural Science), 2014, 46(5): 687-691.
[11] 南京水利科学研究院土工研究所.土工试验技术手册[M].北京:人民交通出版社,2003.
[12] 殷宗泽.土工原理[M].北京:中国水利水电出版社,2007.
[13] 袁聚云, 钱建固,张宏鸣,等. 土质学与土力学[M]. 北京: 人民交通出版社, 2009.
[1] LI Yi,LIU Li-ping,SUN Li-jun. Prediction model on rutting equivalent temperature for asphalt pavement at different depth [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1703-1711.
[2] ZANG Guo-shuai, SUN Li-jun. Method based on inertial point for setting depth to rigid layer [J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[3] NIAN Teng-fei, LI Ping, LIN Mei. Micro-morphology and gray entropy analysis of asphalt characteristics functional groups and rheological parameters under freeze-thaw cycles [J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[4] GONG Ya-feng, SHEN Yang-fan, TAN Guo-jin, HAN Chun-peng, HE Yu-long. Unconfined compressive strength of fiber soil with different porosity [J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[5] CHENG Yong-chun, BI Hai-peng, MA Gui-rong, GONG Ya-feng, TIAN Zhen-hong, LYU Ze-hua, XU Zhi-shu. Pavement performance of nano materials-basalt fiber compound modified asphalt binder [J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[6] JI Wen-yu, LI Wang-wang, GUO Min-long, WANG Jue. Experimentation and calculation methods of prestressed RPC-NC composite beam deflection [J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[7] ZHANG Yang-peng, WEI Hai-bin, JIA Jiang-kun, CHEN Zhao. Numerical evaluation on application of roadbed with composite cold resistance layer inseasonal frozen area [J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[8] MA Ye, NI Ying-sheng, XU Dong, DIAO Bo. External prestressed strengthening based on analysis of spatial grid model [J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[9] LUO Rong, ZENG Zhe, ZHANG De-run, FENG Guang-le, DONG Hua-jun. Moisture stability evaluation of asphalt mixture based on film pressure model of Wilhelmy plate method [J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
[10] NI Ying-sheng, MA Ye, XU Dong, LI Jin-kai. Space mesh analysis method for shear lag effect of cable-stayed bridge with corrugated steel webs [J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464.
[11] ZHENG Chuan-feng, MA Zhuang, GUO Xue-dong, ZHANG Ting, LYU Dan, Qin Yong. Coupling effect of the macro and micro characteristics of mineral powder on the low-temperature performance of asphalt mortar [J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471.
[12] YU Tian-lai, ZHENG Bin-shuang, LI Hai-sheng, TANG Ze-rui, ZHAO Yun-peng. Analyses of defects and causes of steel-plastic compound reinforced retaining wall [J]. 吉林大学学报(工学版), 2017, 47(4): 1082-1093.
[13] CAI Yang, FU Wei, TAO Ze-feng, CHEN Kang-wei. Influence analysis of geotextile on reducing traffic induced reflective cracking using extended finite element model [J]. 吉林大学学报(工学版), 2017, 47(3): 765-770.
[14] WANG Zhi-yuan, LI Guo-dong, WANG Yong-hua. Optimization decision model for bridge design based on AHP-TOPSIS [J]. 吉林大学学报(工学版), 2017, 47(2): 478-482.
[15] CUI Ya-nan, HAN Ji-wei, FENG Lei, LI Jia-di, WANG Le. Microstructure of asphalt under salt freezing cycles [J]. 吉林大学学报(工学版), 2017, 47(2): 452-458.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!