吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 1286-1294.doi: 10.13229/j.cnki.jdxbgxb201704039

• Orginal Article • Previous Articles     Next Articles

Data-driven background model in video surveillance

LI Zhi-hui1, XIA Ying-ji1, QU Zhao-wei1, REN Jing-chen2   

  1. 1.College of Transportation, Jilin University, Changchun 130022, China;
    2.School of Statistics, Beijing Normal University, Beijing 100875,China
  • Received:2016-04-28 Online:2017-07-20 Published:2017-07-20

Abstract: The current modeling assumption may induce background distortion. To solve this problem, a new background model based on data-driven theory is proposed. Model-free adaptive control method is used to express the value of the online video sequence. The slow process of background illumination change is regarded as a nonlinear time-varying system, and is expressed via dynamic linearization using pseudo-gradient vector. Then, the expression is iterated with the combination of historical data and selective background update method to complete the background model iteration process. Experiments are carried out based on different video cases. Results show that the model can get better foreground and more stable background than Kalman filter and Gaussian-mixture model. Furthermore, the data-driven method of the proposed model overcomes the disadvantages of the mechanism models, and its computational efficiency and robustness make it applicable to online video processing and detection of moving objects.

Key words: computer application, background update, model-free adaptive control, background subtraction, video surveillance

CLC Number: 

  • U495
[1] Cutler R, Davis L. View-based detection and analysis of periodic motion[C]//Fourteenth International Conference on Pattern Recognition, Brisbane, 1998: 495-500.
[2] Messelodi S, Modena C M, Segata N, et al. A Kalman filter based background updating algorithm robust to sharp illumination changes[J]. Lecture Notes in Computer Science, 2005, 3617: 163-170.
[3] Ridder C, Munkelt O, Kirchner H. Adaptive background estimation and foreground detection using Kalman-filtering[C]//Proceedings of the International Conference on Recent Advances in Mechatronics, Istanbul, 1995: 193-199.
[4] Chen J Y, Luo X L. The restoration of motion blurred images based on the background modeling[J]. Applied Mechanics & Materials, 2014, 687-691: 3591-3595.
[5] Chan A B, Mahadevan V, Vasconcelos N. Generalized Stauffer-Grimson background subtraction for dynamic scenes[J]. Machine Vision and Applications, 2011, 22(5): 751-766.
[6] Power P W, Schoonees J A. Understanding background mixture models for foreground segmentation[C]//Proceedings Image and Vision Computing, New Zealand, 2002: 267-271.
[7] Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Colorado, 1999: 247-252.
[8] Wen W, Jiang T, Gou Y F. Moving object detection based on improved background updating method for Gaussian mixture model[J]. Advanced Materials Research, 2014, 1049-1050: 1561-1565.
[9] Maddalena L, Petrosino A. A self-organizing approach to background subtraction for visual surveillance applications[J]. IEEE Transactions on Image Processing, 2008, 17(7): 1168-1177.
[10] Maddalena L, Petrosino A. A fuzzy spatial coherence-based approach to background/foreground separation for moving object detection[J]. Neural Computing and Applications, 2009, 19(2): 179-186.
[11] Barnich O, Van Droogenbroeck M. ViBe: A Universal background subtraction algorithm for video sequences[J]. IEEE Transactions on Image Processing, 2011, 20(6): 1709-1724.
[12] Barnich O, Van Droogenbroeck M, VIBE: a powerful random technique to estimate the background in video sequences[C]//2009 IEEE International Conference on Acoustics, Speech, And Signal Processing, New York, 2009: 945-948.
[13] 侯忠生, 许建新. 数据驱动控制理论及方法的回顾和展望[J]. 自动化学报, 2009, 35(6): 650-667.
Hou Zhong-sheng, Xu Jian-xin. On data-driven control theory: the state of the art and perspective[J]. Acta Automatica Sinica, 2009, 35(6): 650-667.
[14] Chao L, Yi Z, Kun M, et al. Wide-area power system stabiliser based on model-free adaptive control[J]. IET Control Theory & Applications, 2015, 9(13): 1996-2007.
[15] 侯忠生, 董航瑞, 金尚泰. 基于坐标补偿的自动泊车系统无模型自适应控制[J]. 自动化学报, 2015, (4): 823-831.
Hou Zhong-sheng, Dong Hang-rui, Jin Shang-tai. Model-free adaptive control with coordinates compensation for automatic car parking systems. Acta Automatica Sinica, 2015, 41(4): 823-831.
[16] Zhu Yuan-ming, Hou Zhong-sheng. Controller dynamic linearisation-based model-free adaptive control framework for a class of non-linear system[J]. IET Control Theory & Applications, 2015, 9(7): 1162-1172.
[17] Kadri M B. Rejecting multiplicative input disturbance using fuzzy model-free adaptive control[J]. Arabian Journal for Science and Engineering, 2014, 39(3): 2381-2392.
[18] Xu D, Jiang B, Shi P. A novel model-free adaptive control design for multivariable industrial processes[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6391-6398.
[19] Hou Zhong-sheng, Zhu Yuan-ming. Controller-dynamic-linearization-based model free adaptive control for discrete-time nonlinear systems[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2301-2309.
[20] 侯忠生. 无模型自适应控制的现状与展望[J]. 控制理论与应用, 2006, 23(4): 586-592.
Hou Zhong-sheng. On model-free adaptive control: the state of the art and perspective[J]. Control Theory & Applications, 2006, 23(4): 586-592.
[21] 侯忠生. 再论无模型自适应控制[J]. 系统科学与数学, 2014, 34(10): 1182-1191.
Hou Zhong-sheng. Highlight and perspective on model free adaptive control[J]. Journal of Systems Science and Complexity, 2014, 34(10): 1182-1191.
[22] 金尚泰. 无模型学习自适应控制的若干问题研究及其应用[D]. 北京: 电子信息工程学院, 北京交通大学, 2008.
Jin Shang-tai.On model free learning adaptive control and applications[D].Beijing:School of Electronic and Information Engineering,Beijing Jiaotong University,2008.
[23] 崔智高, 李艾华, 冯国彦. 动态背景下融合运动线索和颜色信息的视频目标分割算法[J]. 光电子:激光,2014(8):1548-1557.
Cui Zhi-gao, Li Ai-hua, Feng Guo-yan. A video object segmentation algorithm for dynamic bacjground combining motion cue with color information[J]. Journal of Optoelectronics:Laser,2014(8):1548-1557.
[24] 方宇强, 戴斌, 宋金泽, 等. 一种改进的基于活动轮廓和光流的运动目标分割方法[J]. 中南大学学报:自然科学版, 2011, 42(4): 1035-1042.
Fang Yu-qiang, Dai Bin, Song Jin-ze, et al. An improved moving objects segmentation method based on optical flow technique and active contour model[J]. Journal of Central South University (Science and Technology), 2011, 42(4): 1035-1042.
[25] 胡祝华, 赵瑶池, 程杰仁, 等. 基于改进DRLSE的运动目标分割方法[J]. 浙江大学学报:工学版, 2014, 48(8): 1488-1495.
Hu Zhu-hua, Zhao Yao-chi, Cheng Jie-ren, et al. Moving object segmentation method based on improved DRLSE[J]. Journal of Zhejiang University(Engineering Science), 2014, 48(8): 1488-1495.
[26] 孙乐, 戴明, 李刚, 等. H.264压缩域中mean-shift聚类运动目标分割算法[J]. 光电子:激光, 2013(11):2205-2211.
Sun Le, Dai Ming, Li Gang, et al. An algorithm of mean-shift clustering-based moving object segmentation in H.264 compression domain[J]. Journal of Optoelectronics:Laser, 2013(11):2205-2211.
[27] 李静宇, 刘艳滢, 田睿, 等. 视频监控系统中的概率模型单目标跟踪框架[J]. 光学精密工程, 2015, 23(7): 2093-2099.
Li Jing-yu, Liu Yan-ying, Tian Rui, et al. Probabilistic model single target tracking framework for video surveillance system[J]. Optics and Precision Engineering, 2015, 23(7): 2093-2099.
[28] 张诚, 马华东, 傅慧源. 基于时空关联图模型的视频监控目标跟踪[J]. 北京航空航天大学学报, 2015, 41(4): 713-720.
Zhang Cheng,Ma Hua-dong,Fu Hui-yuan.Object tracking in surveillance videos using spatial-temporal correlation graph model[J].Journal of Beijing University of Aeronautics and Astronautics,2015,41(4):713-720.
[29] 朱周, 路小波. 考虑遮挡的视频车辆跟踪[J]. 东南大学学报:英文版, 2015, 31(2): 266-271.
Zhu Zhou, Lu Xiao-bo. Video-based vehicle tracking considering occlusion[J]. Journal of Southeast University (English Edition), 2015, 31(2): 266-271.
[30] Chen C C,Aggarwal J K, Ieee: An adaptive background model initialization algorithm with objects moving at different depths[C]//IEEE International Conference on Image Processing,New York,2008:2664-2667.
[31] Colombari A, Fusiello A. patch-based background initialization in heavily cluttered video[J]. IEEE Transactions on Image Processing, 2010, 19(4): 926-933.
[32] Hsiao H H, Leou J J. Background initialization and foreground segmentation for bootstrapping video sequences[J]. Eurasip Journal on Image and Video Processing, 2013: 12.
[33] Maddalena L, Petrosino A: Towards benchmarking scene background initialization[C]//ICIAP: New Trends in Image Analysis and Processing, Genova, 2015: 469-476.
[34] 李志慧, 张长海, 曲昭伟, 等. 交通流视频检测中背景初始化算法[J]. 吉林大学学报:工学版,2008,38(1):148-151.
Li Zhi-hui, Zhang Chang-hai, Qu Zhao-wei, Wei Wei, Wang Dian-hai. Background initialization algorithm in traffic flow video detection[J]. Journal of Jilin University (Engineering and Technology Edition), 2008,38(1):148-151.
[35] 赖浩喆. 潜油电泵无模型自适应控制[D]. 沈阳:沈阳工业大学电气工程学院,2015.
Lai Hao-zhe. Electrical submersible pump control based on model free adaptive control[D]. Shenyang: School of Electrical Engineering, Shenyang University of Technology, 2015.
[1] LIU Fu,ZONG Yu-xuan,KANG Bing,ZHANG Yi-meng,LIN Cai-xia,ZHAO Hong-wei. Dorsal hand vein recognition system based on optimized texture features [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1844-1850.
[2] WANG Li-min,LIU Yang,SUN Ming-hui,LI Mei-hui. Ensemble of unrestricted K-dependence Bayesian classifiers based on Markov blanket [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1851-1858.
[3] JIN Shun-fu,WANG Bao-shuai,HAO Shan-shan,JIA Xiao-guang,HUO Zhan-qiang. Synchronous sleeping based energy saving strategy of reservation virtual machines in cloud data centers and its performance research [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1859-1866.
[4] ZHAO Dong,SUN Ming-yu,ZHU Jin-long,YU Fan-hua,LIU Guang-jie,CHEN Hui-ling. Improved moth-flame optimization method based on combination of particle swarm optimization and simplex method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1867-1872.
[5] LIU En-ze,WU Wen-fu. Agricultural surface multiple feature decision fusion disease judgment algorithm based on machine vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1873-1878.
[6] OUYANG Dan-tong, FAN Qi. Clause-level context-aware open information extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1563-1570.
[7] LIU Fu, LAN Xu-teng, HOU Tao, KANG Bing, LIU Yun, LIN Cai-xia. Metagenomic clustering method based on k-mer frequency optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1593-1599.
[8] GUI Chun, HUANG Wang-xing. Network clustering method based on improved label propagation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1600-1605.
[9] LIU Yuan-ning, LIU Shuai, ZHU Xiao-dong, CHEN Yi-hao, ZHENG Shao-ge, SHEN Chun-zhuang. LOG operator and adaptive optimization Gabor filtering for iris recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1606-1613.
[10] CHE Xiang-jiu, WANG Li, GUO Xiao-xin. Improved boundary detection based on multi-scale cues fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1621-1628.
[11] ZHAO Hong-wei, LIU Yu-qi, DONG Li-yan, WANG Yu, LIU Pei. Dynamic route optimization algorithm based on hybrid in ITS [J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] HUANG Hui, FENG Xi-an, WEI Yan, XU Chi, CHEN Hui-ling. An intelligent system based on enhanced kernel extreme learning machine for choosing the second major [J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] FU Wen-bo, ZHANG Jie, CHEN Yong-le. Network topology discovery algorithm against routing spoofing attack in Internet of things [J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] CAO Jie, SU Zhe, LI Xiao-xu. Image annotation method based on Corr-LDA model [J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] HOU Yong-hong, WANG Li-wei, XING Jia-ming. HTTP-based dynamic adaptive streaming video transmission algorithm [J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!