吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (3): 735-743.doi: 10.13229/j.cnki.jdxbgxb20161032

• Orginal Article • Previous Articles     Next Articles

Simulation of effect of injection method in compressed natural gas direct injection(CNG-DI) engine on formation mechanism of mixed gas and combustion characteristics

JIANG Tao1, LIN Xue-dong1, LI De-gang1, GU Jing-jing1,2   

  1. 1.State Key Laboratory of Automotive Simulation and Control, Jilin University,Changchun 130022,China;
    2.United Automotive Electronic Systems Co., Ltd., Shanghai 201206,China
  • Received:2016-09-19 Online:2018-05-20 Published:2018-05-20

Abstract: The effects of different direct injection methods of compressed natural gas(CNG) fuel into the cylinder on the microscopic physical fields, the flame propagation mechanisms and the NO formation mechanism were simulated and analyzed using software FIRE. The results show that, after injection the formation mechanism of CNG fuel mixture depends on its separation speed relative to the air in the cylinder, and the separation speed of CNG is controlled effectively by the injection timing according to the kinetic energy provided by gas fuel during the injection, which determines the distribution of concentration fields. During the compression stroke, the concentration distribution rises from the bottom to the top if the fuel was injected early and vice versa. The NO formation rate depends on the concentration and temperature of local mixture. The NO formation rate is almost 0 regardless of equivalence ratio when temperature is lower than 2000 K. The amount of NO production depends on the NO reaction rate, the size of production area and the reaction duration.

Key words: power mechinery and engineering, compressed natural gas direct injection(CNG-DI) engine, injection methods, mixture formation mechanism, combustion characteristic

CLC Number: 

  • TK421.2
[1] Putrasari Y, Praptijanto A, Nur A,et al.Evaluation of performance and emission of SI engine fuelled with CNG at low and high load condition[J]. Science Direct Energy Procedia,2015,68:147-156.
[2] Tahir M M, Ali M S, Salim M A, et al.Performance analysis of a spark ignition engine using compressed natural gas (CNG) as fuel[J]. Energy Procedia,2015,68:355-362.
[3] Yadollahi B, Boroomand M.The effect of combustion chamber geometry on injection and mixture preparation in a CNG direct injection SI engine[J]. Fuel,2013,107:52-62.
[4] Roy S, Das A K, Banerjee R.Application of Greye Taguchi based multi-objective optimization strategy to calibrate the PMeNHCeBSFC trade-off characteristics of a CRDI assisted CNG dual-fuel engine[J]. Journal of Natural Gas Science and Engineering, 2014,21:524-531.
[5] Wu Chong-min, Deng Kang-yao, Wang Zhen.The effect of combustion chamber shape on cylinder flow and lean combustion process in a large bore spark-ignition CNG engine[J]. Journal of the Energy Institute,2015,89(2):1-8.
[6] Semin, Cahyono B,Amiadji, et al. Air-fuel mixing and fuel flow velocity modeling of multi holes injector nozzle on CNG marine engine[J]. Procedia Earth and Planetary Science,2015,14:101-109.
[7] 木戸口善行. 噴射制御による直接噴射式天然ガス内燃機関の希薄燃焼に関する研究[J].自動車技術会論文集,2010,41(4):859-864.
[8] Imran S, Emberson D R, Diez A, et al.Natural gas fueled compression ignition engine performance and emissions maps with diesel and RME pilot fuels[J]. Applied Energy,2014,124:354-365.
[9] 焦运景,司鹏鵾,杨志勇,等. 气道形状对天然气发动机缸内气体流动与燃烧过程影响的研究[J].内燃机工程,2013,34(3):26-31.
Jiao Yun-jing, Si Peng-kun, Yang Zhi-yong,et al.Effect of intake port geometry on in-cylinder flow field and combustion in natural gas engine[J]. Chinese Internal Combustion Engineering,2013,34(3):26-31.
[1] MENG Yu-bo, LI Pi-mao, ZHANG You-tong, WANG Zhi-ming. Inhibition of pressure fluctuation and multi-injection fuel mass deviation in high pressure common rail system [J]. 吉林大学学报(工学版), 2018, 48(3): 760-766.
[2] SUN Zheng, HUANG Yu-qi, YU Xiao-li. Numerical simulation of flow and heat transfer in journal bearing lubrication [J]. 吉林大学学报(工学版), 2018, 48(3): 744-751.
[3] YU Liu, LIU Zhong-chang, LIU Jin-shan, LIU Jiang-wei, DU Hong-fei, CHENG Peng. Gasoline spray front droplet size characteristics [J]. 吉林大学学报(工学版), 2018, 48(3): 720-726.
[4] TANG Zhi-gang, ZHANG Li, SHANG Hui-chao, LYU Xiao-hui, CHEN Xi, ZHENG Ren-wei. Combustion characteristics in glow-plug ignition miniature ICE and influence of residual gas [J]. 吉林大学学报(工学版), 2017, 47(3): 811-818.
[5] YUAN Chen-heng,FENG Hui-hua,WANG Meng-qiu,ZUO Zheng-xing. Combustion characteristics of free-piston gasoline engine for linear alternator [J]. 吉林大学学报(工学版), 2015, 45(1): 127-132.
[6] BAO Tang-tang, HU Zong-jie, HU Jun-chao, RUAN Yi-ping, DENG Jun, WU Zhi-jun. Combustion characteristics of diesel-gasoline blend fuel based on ultrasonic atomization technology [J]. 吉林大学学报(工学版), 2013, 43(04): 903-908.
[7] HAN Li-wei,HONG Wei,ZHANG Ji-peng,GUO Ying-nan,CHANG Guo-feng . Influence of charge temperature on methanol homogeneous charge
compression ignition combustion characteristics
[J]. 吉林大学学报(工学版), 2009, 39(01): 17-20.
[8] CHEN Hua-yan,SU Jun-lin,JIAO Zhen-wei .

Combustion characteristic of biomass compound coal

[J]. 吉林大学学报(工学版), 2008, 38(06): 1281-1286.
[9] HONG Wei, YANG Xiao-ping, XU Yun, SUN Ji-mei . Development of a Constant-Volume Combustion Test System for the Analysis of Combustion Characteristics of Natural-Gas Engine [J]. 吉林大学学报(工学版), 2000, (4): 1-3.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] XIAO Rui, DENG Zong-cai, LAN Ming-zhang, SHEN Chen-liang. Experiment research on proportions of reactive powder concrete without silica fume[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .