Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (3): 859-864.doi: 10.13229/j.cnki.jdxbgxb20180667

Previous Articles     Next Articles

Mechanical property of 45 steel under reciprocating torsional load based on nanoindentation analysis

Cong LI(),Hong⁃wei ZHAO(),Lin⁃lin SUN   

  1. Collegeof Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China
  • Received:2018-06-22 Online:2019-05-01 Published:2019-07-12
  • Contact: Hong?wei ZHAO E-mail:congli13@ mails.jlu.edu.cn;hwzhao@jlu.edu.cn

Abstract:

The tensile properties of 45 steel after reciprocating torsion are tested by self?made in?situ tension?torsion?nanoindentation mechanical testing device.In this study, the mechanical properties curve of 45 steel after reciprocating torsion and the changes of its elastic modulus, hardness, yield strength and strain hardening exponent are obtained by Nano indentation test. The feasibility of calculating the mechanical properties of 45 steel by Nano indentation test is confirmed by in?situ tensile test. The mechanical parameters obtained by tensile test and indentation test are in good agreement. The damage mechanism of materials under reciprocating torsional loads is further analyzed by in?situ images, and the correctness of the experimental results is confirmed. The experimental basis is provided for obtaining the mechanical properties of materials by nanoindentation test in service.

Key words: material mechanics, reciprocating torsion, nano indentation, in?situtension, damage mechanism

CLC Number: 

  • O341

Fig.1

Test equipment"

Table 1

Chemical element of 45 steel"

成分CSiMnCrNiCu
质量分数/%0.42~0.500.17~0.370.50~0.80≤0.25≤0.30≤0.25

Fig.2

Metallographic structure image of normalized 45 steel"

Fig.3

Test process diagram"

Fig.4

Indentation Curves"

Table 2

Calculated mechanical parameters"

组别序号硬度/GPa硬化指数弹性模量/GPa屈服强度/MPa

第一组

(未预扭转)

14.1930.321221.567366.417
24.0890.342208.435284.905
34.3510.313198.843399.513
均值4.2110.325209.615350.278

第二组

(往复扭转 22.5°)

44.9640.311188.762385.806
54.4710.297179.658455.180
65.2010.269182.362569.3420
均值4.8790.292183.594470.109

第三组

(往复扭转 45°)

75.7210.221148.223689.0754
85.6880.199200.505763.245
95.0740.264140.808667.967
均值5.4940.228163.179706.762

Fig.5

Tensile curves"

Fig.6

In-situ images"

1 陈刚,陈忠富,陶俊林,等.45钢动态塑性本构参量与验证[J].爆炸与冲击,2005,25(5):451⁃456.
ChenGang, ChenZhong⁃fu, TaoJun⁃lin, et al. Investigation and validation on plastic constitutive parameters of 45 steel[J]. Explosion and Shock Waves,2005,25(5):451⁃456.
2 周海波,朱晓勇,郑玉春,等.45钢螺栓断裂失效分析[J].金属热处理,2009,34(12):107⁃109.
ZhouHai⁃bo, ZhuXiao⁃yong, ZhengYu⁃chun, et al. Fracture analysis of 45 steel bolt[J]. Heat Treatment of Metals, 2009,34(12):107⁃109.
3 王长健.45钢锥套淬火裂纹失效分析[J].金属热处理,2017,42(4):204⁃207.
WangChang⁃jian. Failure analysis on quenching cracks of 45 steel taper sleeve[J]. Heat Treatment of Metals, 2017,42(4):204⁃207.
4 朱萍. GH4169盘件径轴向裂纹无损检测方法研究[D].哈尔滨:哈尔滨工业大学材料科学工程学院,2017.
ZhuPing. Research on nondestructive inspecting method for radial⁃axial crack of GH4169 disk[D]. Harbin:College of Materials Science and Engineering, Harbin Institute of Technology,2017.
5 OliverW C, PharrG M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Mmaterials Research,1992,7(6):1564⁃1583.
6 OliverW C, PharrG M. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology[J]. Journal of Materials Research,2004,19(1):3⁃20.
7 De BonoD M, LondonT, BakerM, et al. A robust inverse analysis method to estimate the local tensile properties of heterogeneous materials from nanoindentation data[J]. International Journal of Mechanical Sciences, 2017,123:162⁃176.
8 ChoiY, ChooW Y, KwonD. Analysis of mechanical property distribution in multiphase ultra⁃fine⁃grained steels by nanoindentation[J]. Scripta Materialia, 2001,45(12):1401⁃1406.
9 DasG, DasM, SinhaS, et al. Characterization of cast stainless steel weld pools by using ball indentation technique[J]. Materials Science and Engineering A, 2009,389⁃393:513⁃514.
10 MingDao, ChollacoopNuwong, Van VlietK J, et al.Computational modeling of the forward and reverse problems in instrumented sharp indentation [J]. Acta Materialia, 2001,49(19):3899⁃3918.
11 FernandesJ V, ChaparroB M, AntunesJ M, et al. A new approach for reverse analyses in depth⁃sensing indentation using numerical simulation[J]. Acta Materialia, 2007,55:69⁃81.
12 ChengG, ZhangF, RuimiA, et al. Quantifying the effects of tempering on individual phase properties of DP980 steel with nanoindentation[J]. Materials Science and Engineering: A, 2016,667:240⁃249.
13 申宇,张珂,岑风,等.IF钢晶界的微观力学性能及其对宏观力学性能的影响[J].机械工程材料,2018,42(2):31⁃34.
ShenYu, ZhangKe, QinFeng, et al. Micro⁃mechanical properties at grain boundaries of IF steel and their effect on macro⁃mechanical properties[J]. Materials for Mechanical Engineering, 2018,42(2):31⁃34.
14 张东生,李新涛,夏汇浩,等.纳米压痕技术表征T800碳纤维的弹性模量和硬度[J].宇航材料工艺,2017,47(4):79⁃85.
ZhangDong⁃sheng, LiXin⁃tao, XiaHui⁃hao, et al. Characterization of elastic modulus and hardness of T800 carbon fiber via nanoindentation technique[J]. Aerospace Materials & Technology,2017,47(4):79⁃85.
15 陈今龙,周素洪,叶兵,等.纳米压痕表征技术的应用与发展[J].热加工工艺,2018,47(16):13⁃17.
ChenJin⁃long, ZhouSu⁃hong,YeBing, et al. Application and development of nanoindentation characterization technology[J]. Hot Working Technology,2018,47(16):13⁃17.
16 Diez⁃Pascual AnaM, Gómez⁃Fatou MariánA, Ania. Nanoindentation in polymer nanocomposites[J]. Progress in Materials Science,2015,67:1⁃94.
17 ChenLing, AylinAhadi, ZhouJin⁃ming. Quantitative study of roughness effect in nanoindentation on AISI 316L based on simulation and experiment[J]. Proceedings of the Institution of Mechanical Engineers,Part C: Journal of Mechanical Engineering Science,2016,231(21):4067⁃4075.
18 IshikawaNobuyuki, YasudaKyono, SueyoshiHitoshi, et al. Microscopic deformation and strain hardening analysis of ferrite⁃bainite dual⁃phase steels using micro⁃grid method[J].Acta Materialia, 2015,97:257⁃268.
19 马亚鑫,高怡斐,曾雨吟,等.利用纳米压痕表征高铁车轮微观相的力学性能[J].材料导报,2015,29(6):102⁃106.
MaYa⁃xin, GaoYi⁃fei, ZengYu⁃yin,et al. Characterizing mechanical properties of micro⁃phases in high⁃speed railway wheel steel by nano⁃indentation[J]. Materials Review, 2015,29(6):102⁃106.
20 梁文,吴润,胡俊,等.显微组织对FB60钢板延伸凸缘性能的影响[J].上海金属,2018,40(4):22⁃28.
LiangWen, WuRun, HuJun, et al. Effect of microstructure on strength⁃flange⁃formability of FB60 steel plate[J]. Shanghai Metals, 2018,40(4):22⁃28.
[1] ZHUANG Wei-min, CHEN Yan-hong. Simulation of surface coating failure based on continuum damage mechanics [J]. , 2012, 42(04): 857-862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Lei,HE Xin-sheng,ZHANG Ying,YANG He-ran. Development of new type ER fluid-assisted polishing  tool and its polishing experiment[J]. 吉林大学学报(工学版), 2010, 40(04): 1009 -1014 .
[2] MA Wen-xing,HU Jing,CHU Ya-xu,WANG Song-lin,WU Yue-shi. Dynamic load strength analysis of over-running clutch of dual turbine torque[J]. 吉林大学学报(工学版), 2014, 44(3): 675 -679 .
[3] SHI Dong-yong, YING Liang, HU Ping, SHEN Guo-zhe, WU Wen-hua, JIANG Da-xin. Numerical simulation of 3D temperature field in hot forming of high strength steel[J]. 吉林大学学报(工学版), 2014, 44(4): 946 -952 .
[4] LIU Luo, GUO Li-hong, WANG Jian-jun, XIAO Hui, FANG Yan-chao, WANG Gai-ge. Software reliability allocation of laser angle deception simulation system[J]. 吉林大学学报(工学版), 2013, 43(02): 429 -434 .
[5] LIU Kun, YE Ming, LI Chao, YAN Peng-fei, LIU Jin-qiao. Design and analysis of an arm mechanical structure or sit-to-stand rehabilitation training[J]. 吉林大学学报(工学版), 2016, 46(5): 1532 -1539 .
[6] CHEN Tao, DENG Hui-fang, LIU Jing. Image categorization method using density clustering on region features and multi-instance learning[J]. 吉林大学学报(工学版), 2014, 44(4): 1126 -1134 .
[7] XI Li-he,ZHANG Xin,SUN Chuan-yang,WANG Ze-xing,JIANG Tao. Adaptive energy management strategy for extended range electric vehicle[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1636 -1644 .
[8] SHANGGUAN Ai-hong, ZHANG Hao-su, WANG Chen-jie, QIN De-jin, LIU Zhao-hui. Design of thermal vacuum quasi-accelerated life test for space two-axis gimbal[J]. 吉林大学学报(工学版), 2016, 46(1): 186 -192 .
[9] XU Liang, LAN Jin, WANG Ming-sen, GAO Jian-min, LI Yun-long. Effect of swirl number on heat transfer characteristics of swirling impinging jets[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1483 -1491 .
[10] SHI Hong-wei, SHI Yao-wu, YIN Yong-guang. Food bacteria auto identification method based on image treatment[J]. , 2012, 42(04): 1049 -1053 .