吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 1126-1134.doi: 10.13229/j.cnki.jdxbgxb201404034

Previous Articles     Next Articles

Image categorization method using density clustering on region features and multi-instance learning

CHEN Tao, DENG Hui-fang, LIU Jing   

  1. School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China
  • Received:2013-02-28 Online:2014-07-01 Published:2014-07-01

Abstract: In order to narrow the semantic gap between low-level visual features and high-level semantic concepts in image categorization, the clustering information from a density clustering algorithm and the characteristics of multi-instance learning framework in distinguishing ambiguous object are exploited. An image categorization method is proposed using Density Clustering on Region Features and Multi-Instance Learning (DCRF-MIL). First, the DCRF-MIL divides each image into number of regions and relines up all regions into a collection; then it uses a density clustering algorithm to learn the potential distribution information of the region features in the collection. Second, it treats an image as a bag and the regions as instances in the bag. Based on the cluster distribution information of region features, the bag is mapped into a vector in the cluster distribution space. Finally, a support vector machine classifier is constructed to predict the class label of the unlabeled image. The experiments on the Corel image data set and MUSK molecular activity prediction data set show that the DCRF-MIL method has high classification accuracy and it is easy to select its parameters.

Key words: artificial intelligence, image categorization, multi-instance learning, density clustering, support vector machine

CLC Number: 

  • TP391.4
[1] Binder A, Mueller K R, Kawanabe M. On taxonomies for multi-class image categorization[J]. International Journal of Computer Vision, 2012, 99(3):281-301.
[2] Hu Xiao-hong, Xu Qian, Ma Xin-ming, et al. A novel region-based image annotation using multi-instance learning[C]∥Proceedings of the Second International Workshop on Knowledge Discovery and Data Mining, 2009:602-605.
[3] Song Xiang-fa, Jiao L C, Yang Shu-yuan. Sparse coding and classifier ensemble based multi-instance learning for image categorization[J]. Signal Processing, 2013, 93(1):1-11.
[4] Dietterich T G, Lathrop R H, Lozano-Pérez T. Solving the multiple-instance problem with axis-parallel rectangles[J]. Artificial Intelligence, 1997, 89(1/2): 31-71.
[5] Foulds James, Frank Eibe. A review of multi-instance learning assumptions[J]. Knowledge Engineering Review, 2010, 25(1):1-25.
[6] Fu Zhou-yu, Robles-Kelly A, Zhou Jun. Multiple instance learning with instance selection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(5):958-977.
[7] Babenko B, Verma N, Dollár P, et al. Multiple instance learning with manifold bags[C]∥Proceedings of the 28th International Conference on Machine Learning, ICML 2011:81-88.
[8] 陈绵书, 杨树媛, 赵志杰, 等.多点多样性密度算法及其在图像检索中的应用[J].吉林大学学报:工学版, 2011, 41(5):1456-1460. Chen Mian-shu, Yang Shu-yuan, Zhao Zhi-jie, et al.Multi-points diverse density learning algorithm and its application in image retrieval[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(5):1456-1460.
[9] Maron O, Lozano-Pérez T. A framework for multiple-instance learning[J]. Advances in Neural Information Processing Systems, Cambridge, MA: MIT Press, 1998: 570-576.
[10] Zhang Q, Goldman S A. EM-DD: an improved multiple-instance learning technique[J]. Advances in Neural Information Processing Systems, Cambridge, CA: MIT Press, 2002: 1073-1080.
[11] 李展, 彭进业, 温超. 基于谱聚类和多示例学习的图像检索方法[J].华南理工大学学报:自然科学版, 2011, 39(7): 156-162. Li Zhan, Peng Jin-ye, Wen Chao. Image retrieval based on spectral clustering and multiple instance learning[J]. Journal of South China University of Technology (Natural Science Edition), 2011, 39(7): 156-162.
[12] Andrews S, Tsochantaridis I, Hofmann T. Support vector machines for multiple instance learning[C]∥Advances in Neural Information Processing Systems, Cambridge, MA: MIT Press, 2003:561-568.
[13] Yang Chang-bo, Dong Ming, Hua Jing. Region-based image annotation using asymmetrical support vector machine-based multiple-Instance learning[C]∥Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, 2: 2057-2063.
[14] 路晶, 马少平. 使用多例学习的启发式SVM算法的图像自动标注[J]. 计算机研究与发展, 2009, 46(5): 864-871. Lu Jing, Ma Shao-ping. Region-based image annotation using heuristic support vector machine in multiple-instance learning[J]. Journal of Computer Research and Development, 2009, 46(5):864-871.
[15] Chen Y X, Wang J Z。 Image categorization by learning and reasoning with regions[J]. Journal of Machine Learning Research, 2004, 5: 913-939.
[16] Chen Y X, Bi J, Wang J Z. MILES: Multiple-instance learning via embedded instance selection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(12):1931-1947.
[17] Zhou Zhi-Hua。 Multi-instance learning from supervised view[J]. Journal of Computer Science and Technology, 2006, 6(5):800-809.
[18] Wang J Z, Li J, Wiederhold G.SIMPLIcity: Semantics-sensitive integrated matching for picture libraries[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(9):947-963.
[19] Yang Christopher C, Ng Tobun Dorbin.Analyzing and visualizing web opinion development and social interactions with density-based clustering[J]. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 2011, 41(6): 1144-1155.
[20] Kundakcioglu O E, Seref O, Pardalos P M.Multiple instance learning via margin maximization [J].Applied Numerical Mathematics, 2010, 60(4): 14-23.
[21] Yang Jun, Jiang Yu-gang, Hauptmann Alexander G, et al. Evaluating bag-of-visual-words representations in scene classification[C]∥Proceedings of the 9th ACM SIG Multimedia International Workshop on Multimedia Information Retrieval, 2007:197-206.
[1] KUI Hai-lin, BAO Cui-zhu, LI Hong-xue, LI Ming-da. Idling time prediction method based on least square support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1360-1365.
[2] DONG Sa, LIU Da-you, OUYANG Ruo-chuan, ZHU Yun-gang, LI Li-na. Logistic regression classification in networked data with heterophily based on second-order Markov assumption [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1571-1577.
[3] GU Hai-jun, TIAN Ya-qian, CUI Ying. Intelligent interactive agent for home service [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1578-1585.
[4] WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Measurement of graph similarity based on vertical dimension sequence dynamic time warping method [J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[5] ZHANG Hao, ZHAN Meng-ping, GUO Liu-xiang, LI Zhi, LIU Yuan-ning, ZHANG Chun-he, CHANG Hao-wu, WANG Zhi-qiang. Human exogenous plant miRNA cross-kingdom regulatory modeling based on high-throughout data [J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[6] HUANG Lan, JI Lin-ying, YAO Gang, ZHAI Rui-feng, BAI Tian. Construction of disease-symptom semantic net for misdiagnosis prompt [J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[7] LI Xiong-fei, FENG Ting-ting, LUO Shi, ZHANG Xiao-li. Automatic music composition algorithm based on recurrent neural network [J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[8] LIU Jie, ZHANG Ping, GAO Wan-fu. Feature selection method based on conditional relevance [J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[9] GENG Qing-tian, YU Fan-hua, WANG Yu-ting, GAO Qi-kun. New algorithm for vehicle type detection based on feature fusion [J]. 吉林大学学报(工学版), 2018, 48(3): 929-935.
[10] CAI Zhen-nao, LYU Xin-en, CHEN Hui-ling. Prediction model of somatization disorder based on an oppositional bacterial foraging optimization based support vector machine [J]. 吉林大学学报(工学版), 2018, 48(3): 936-942.
[11] WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Heuristic algorithm of all common subsequences of multiple sequences for measuring multiple graphs similarity [J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[12] YANG Xin, XIA Si-jun, LIU Dong-xue, FEI Shu-min, HU Yin-ji. Target tracking based on improved accelerated gradient under tracking-learning-detection framework [J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[13] LIU Xue-juan, YUAN Jia-bin, XU Juan, DUAN Bo-jia. Quantum k-means algorithm [J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[14] FAN Min, HAN Qi, WANG Fen, SU Xiao-lan, XU Hao, WU Song-lin. Scene image categorization algorithm based on multi-level features representation [J]. 吉林大学学报(工学版), 2017, 47(6): 1909-1917.
[15] QU Hui-yan, ZHAO Wei, QIN Ai-hong. A fast collision detection algorithm based on optimization operator [J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!