Journal of Jilin University(Engineering and Technology Edition) ›› 2020, Vol. 50 ›› Issue (2): 668-677.doi: 10.13229/j.cnki.jdxbgxb20190344

Previous Articles    

Clearing strategy of underwater video image

Yan-fen CHENG(),Li-juan YAO,Qiao YUAN,Xian-qiao CHEN   

  1. School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430063, China
  • Received:2019-04-09 Online:2020-03-01 Published:2020-03-08

Abstract:

The general method to sharp the underwater video image is vulnerable to provoking issues such as image distortion, noise amplification, and the flicker and jump of adjacent frames in video playback. To overcome these disadvantages, a single color method based on color space as well as the underwater image sharpening method and an underwater video sharpening method based on spatiotemporal information fusion are proposed. In the process of clearing the single underwater image, the phenomenon that the transmittance is estimated to be large in traditional method is polished, and the combination of dark channel prior and color saturation is adopted in order to polish the background light. For the phenomenon of flicker and jump in adjacent frames in video playback, the time and space information are fused, and the more stable transmittance is estimated by interpolation and averaging. The experimental results show that the proposed underwater video sharpening method works effectively in the clearing of underwater video images, resulting in well-processed continuity and smoothness of the video.

Key words: information processing technology, underwater video image, color space, space-time information, background light, transmittance

CLC Number: 

  • TP391.4

Fig.1

Underwater image imaging"

Fig.2

Underwater image and fog line"

Fig.3

Flow chart of underwater video transmittance value"

Fig.4

Underwater image contrast enhancement result"

Fig.5

Comparison of single underwater image restoration effect"

Fig.6

Comparison of single underwater image restoration effect"

Fig.7

Comparison of underwater video restoration effect"

Fig.8

Comparison of underwater video restoration effect"

Table 1

Objective evaluation of underwater single image"

组别

评价

指标

算法
HeCLAHEMSRCR本文
1gˉ2.304 86.768 33.067 83.859 9
H14.635 017.723 014.059 216.644 7
EAV8.746 425.462 412.248 614.522 4
2gˉ3.732 410.973 75.076 05.739 3
H15.132 017.053 314.955 315.689 7
EAV18.503 855.968 324.998 433.231 6

Table 2

Objective evaluation of underwater video"

组别方法评价指标第99帧第103帧第105帧
1文献[5]gˉ1.407 02.740 23.272 8
H14.059 414.310 614.246 5
EAV6.524 011.089 613.080 5
逐帧处理gˉ1.247 71.605 71.848 5
H14.519 914.990 115.212 2
EAV6.278 77.483 78.508 5
本文算法gˉ1.207 51.538 21.776 6
H14.352 914.846 015.046 3
EAV6.217 07.417 28.391 8
方法评价指标第50帧第59帧第70帧
2文献[5]gˉ4.628 54.467 74.266 9
H13.282 813.291 213.584 1
EAV16.887 715.506 414.705 5
逐帧处理gˉ7.182 66.643 36.714 7
H14.768 214.747 914.850 5
EAV26.987 023.520 623.724 2
本文算法gˉ6.635 86.294 86.261 9
H14.459 614.355 014.442 4
EAV24.070 921.966 821.806 7
1 徐岩, 孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报: 工学版, 2018, 48(6): 1895-1903.
Xu Yan, Sun Mei-shuang. Enhancing underwater image based on convolutional neural networks[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(6): 1895-1903.
2 李一兵, 付强, 张静. 水下模糊图像参数估计复原方法[J]. 吉林大学学报: 工学版, 2013, 43(4): 1133-1138.
Li Yi-bing, Fu Qiang, Zhang Jing. Underwater blurred image restoration based on parameter estimation[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(4): 1133-1138.
3 John J, Wilscy M. Enhancement of weather degraded video sequences using wavelet fusion[C]∥IEEE International Conference on Cybernetic Intelligent Systems, London, UK, 2008: 1-6.
4 Yoon I, Kim S, Kim D, et al. Adaptive defogging with color correction in the HSV color space for consumer surveillance system[J]. IEEE Transactions on Consumer Electronics, 2012, 58(1): 111-116.
5 Qing C, Yu F, Xu X, et al. Underwater video dehazing based on spatial-temporal information fusion[J]. Multidimensional Systems & Signal Processing, 2016, 27(4): 909-924.
6 Mcglamery B L. A computer model for underwater camera systems[J]. Proc Spie, 1980(208): 221-231.
7 杨淼, 纪志成. 基于模糊形态筛和四元数的水下彩色图像增强[J]. 仪器仪表学报, 2012, 33(7): 1601-1605.
Yang Miao, Ji Zhi-cheng. Underwater color image enhancement based on fuzzy morphological sieve and quaternion[J]. Chinese Journal of Scientific Instrument, 2012, 33(7): 1601-1605.
8 黄冬梅, 宋巍, 王龑, 等. 一种基于相对全局直方图拉伸的浅海水下图像增强方法[P]. 中国CN107067386 A, 2017⁃04⁃24.
9 Berman D, Treibitz T, Avidan S. Non-local image dehazing[C]∥Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 1674-1682.
10 Wang M, Mai J, Liang Y, et al. Component-based distributed framework for coherent and real-time video dehazing[C]∥IEEE International Conference on Computational Science and Engineering, Guangzhou, China, 2017: 321-324.
11 窦易文, 周鸣争, 唐肝翌, 等. 焦点引导的带颜色恢复的多尺度Retinex算法[J]. 计算机工程与应用,2013, 49(2): 207-210.
Dou Yi-wen, Zhou Ming-zheng, Tang Gan-yi, et al. Focus-guided multi-scale Retinex algorithm with color restoration[J]. Computer Engineering and Applications, 2013, 49(2): 207-210.
12 He K, Sun J, Tang X. Single image haze removal using dark channel prior[C]∥Computer Vision and Pattern Recognition, 2009, Miami, Florida, USA, 2009: 1956-1963.
13 Hitam M S, Awalludin E A, Wan N J H W Y, et al. Mixture contrast limited adaptive histogram equalization for underwater image enhancement[C]∥International Conference on Computer Applications Technology, Bali, Indonesia, 2013: 1-5.
[1] Fu LIU, Mei-jing QUAN, Ke WANG, Yun LIU, Bing KANG, Zhi-wu HAN, Tao HOU. Indoor positioning method based on location fingerprinting of imitating mechanism of scorpion vibration source [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2076-2082.
[2] Xiao-hui YU,Zhi-cheng ZHANG,Xin-bo LI,Xiao-dong SUN. Parameter estimation of exponentially damped sinusoidsbased on state⁃space model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2083-2088.
[3] Zi-ji MA,Hao LU,Yan-ru DONG. Dual path convolutional neural network forsingle image super⁃resolution [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2089-2097.
[4] Yang LU,Shi-gang WANG,Wen-ting ZHAO,Yan ZHAO. Facial expression recognition based on separability assessment of discrete Shearlet transform [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1715-1725.
[5] Chao DONG,Jing⁃hong LIU,Fang XU,Ren⁃hao WANG. Fast ship detection in optical remote sensing images [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1369-1376.
[6] Ke⁃yan WANG,Yan HU,Huai WANG,Yun⁃song LI. Image dehazing algorithm by sky segmentation and superpixel⁃level dark channel [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1377-1384.
[7] Lu⁃tao LIU,Na LI. Source detection based on coprime array [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 986-993.
[8] Tohtonur,Hai⁃long ZHANG,Jie WANG,Na WANG,Xin⁃chen YE,Wan⁃qiong WANG. High speed median filtering algorithm based on graphics processing unit [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 979-985.
[9] Yin⁃juan FU,Yong LI,Li⁃qin XU,Kun⁃hui ZHANG. Design and analysis of NLFM⁃Costas RF stealth radar signal [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 994-999.
[10] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[11] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[12] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[13] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[14] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[15] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!