Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (1): 96-106.doi: 10.13229/j.cnki.jdxbgxb20190861

Previous Articles     Next Articles

Seismic isolation performance of waste scrap tire pads under aging-loading coupling

Guang-tai ZHANG(),Jin-peng ZHANG,Ming-yang WANG,Dong-liang LU,Mei ZHANG   

  1. School of Architecture and Engineering,Xinjiang University,Urumqi 830047,China
  • Received:2019-09-04 Online:2021-01-01 Published:2021-01-20

Abstract:

In order to study the seismic isolation performance of waste Scrap Tire Pads (STP) under aging-loading coupling, 6-layer STP with a geometry of 180 mm×180 mm×69 mm were selected for aging test at a temperature of 100 °C. The hot air accelerated aging test was carried out for 77h, 154h, 231h, and 308 h under the load of 5MPa. The STP with accelerated degradation were subjected to the pseudo-static test under the wall. The effects of aging time and coupling load on the hysteresis, skeleton curve, horizontal equivalent stiffness, equivalent damping ratio, residual displacement and stiffness degradation of the layered STP under the wall are analyzed. Combined with internal/external damage behaviors such as STP deformation, degumming, wire mesh failure and crack propagation in the aging test, the influence law of the effect of thermal oxygen erosion on the seismic isolation performance of STP and the failure mechanism of isolation performance are expounded comprehensively. The experimental results show that the new STP structure system has good effects of isolation, limit and reset, and stable mechanical performance in the whole life cycle of building structure, and reliable isolation performance. On the basis of considering STP self-reset, it is recommended that its safe service life is 50 years. The research results are intended to provide a theoretical basis for the popularization and application of the new type of under-wall waste laminated tire isolation structure in high-intensity villages and towns.

Key words: waste scrap tire pads, aging-load coupling, isolation performance, failure mechanism, time-change law

CLC Number: 

  • TU352.12

Fig.1

Actual picture of scrap tire rubber pads"

Fig.2

Connection type of scrap tire rubber pads"

Fig.3

Schematic diagram of loading mold"

Fig.4

STP placed in the electric thermostat blast drying oven"

Fig.5

Loading device experiment diagram"

Fig.6

STP placement diagram in loading device"

Table 1

Aging experiment content of scrap tire rubber pads"

试件编号温度/℃试验时间/h相当条件

试件

组数

STP?251007720 ℃×25a36
STP?5010015420 ℃×50a36
STP?7510023120 ℃×75a36
STP?10010030820 ℃×100a36

Fig.7

New isolation system under wall of villages and towns"

Fig.8

Microscopic view of rubber at STP crown after non-stressed aging"

Fig.9

STP macroscopic phenomenon after stress aging"

Fig.10

Displacement-time loading curve"

Fig.11

STP in test"

Fig.12

STP force and deformation map"

Fig.13

STP destruction diagram after pseudo-static test"

Fig.14

Damage diagram of each layer of tire after end of the test"

Table 3

STP hysteresis loop energy consumption results"

时间γ=25%γ=50%γ=75%γ=100%
/hJFJFJFJF
0301.82216.721565.45820.543867.032219.756955.434607.02
77306.58221.141394.18835.053751.972262.836761.054995.37
154307.30210.751508.76873.763916.612341.586855.544642.43
231300.97213.861416.18913.823377.562832.256083.095410.33
308453.41223.761726.02921.323937.002734.796875.485746.43

Fig. 15

Hysteresis curve of STP under different aging time"

Fig.16

Skeleton curve after aging"

Fig.17

Horizontal equivalent stiffness after aging"

Fig.18

Equivalent damping ratio after aging"

Fig.19

residual displacement"

1 孟庆利, 冯浩. 铅芯废旧轮胎隔震垫(LRTP)力学性能试验研究[J]. 土木工程学报, 2018, 51(1): 58-67.
Meng Qing-li, Feng Hao. The experimental study on mechnical behavior of lead recycle tire pads(LRTP)[J]. China Civil Engineering Journal, 2018, 51(1): 58-67.
2 陆东亮, 张广泰, 魏飞来, 等. 叠层轮胎隔震垫轴压状态下的破坏准则[J]. 河南科技大学学报:自然科学版, 2019, 40(2):70-75.
Lu Dong-liang, Zhang Guang-tai, Wei Fei-lai, et al. Failure criterion of scrap tire rubber pads under axial compression[J]. Journal of Henan University of Science and Technology(Natural Science), 2019, 40(2):70-75.
3 张广泰, 陆东亮, 章金鹏, 等. 老化-荷载耦合下叠层轮胎隔震垫的竖向力学性能[J]. 材料导报, 2019, 33(18): 3140-3146.
Zhang Guang-tai, Lu Dong-liang, Zhang Jin-peng, et al.Vertical mechanical properties of scrap tire rubber pads under aging-loading[J]. Materials Reports, 2019, 33(18): 3140-3146.
4 Mishra H K, Igarashi A, Dang J, et al. Pseudo-Dynamic testing for seismic performance assessment of buildings with seismic isolation system using scrap tire rubber pad isolators[J]. Journal of Civil Engineering and Architecture, 2014, 8(1):73-88.
5 张国荣. 不同压缩比下橡胶老化松弛机理的研究[D]. 北京:北京化工大学材料与工程学院, 2011.
Zhang Guo-rong. Study on the aging relaxation mechanism of rubber at differrnt compression rations[D]. Beijing: School of Materials and Engineering, Beijing University of Chemical Technology, 2011.
6 蒋沙沙. 硅橡胶加速老化及失效机理研究[D]. 哈尔滨:哈尔滨工业大学航天学院, 2013.
Jiang Sha-sha. Study on accelerated aging and failure mechanism of silicone rubber[D]. Harbin: School of Astronautics, Harbin Institute of Technology, 2013.
7 许斌, 唐家祥. 基础隔震叠层橡胶支座耐久性试验研究[J]. 工程抗震与加固改造, 1995(4): 41-44.
Xu Bing, Tang Jia-xiang. Experimental Study on durability of base-isolated laminated rubber bearings[J]. Earthquake Resistant Engineering and Retrofitting, 1995(4): 41-44.
8 裴若娟, 唐家祥. 叠层橡胶隔震器的耐久性[J]. 工程抗震与加固改造, 1993(3): 36-39.
Pei Ruo-juan, Tang Jia-xiang. Durability of laminated rubber isolators[J]. Earthquake Resistant Engineering and Retrofitting, 1993(3): 36-39.
9 庄学真, 周福霖, 沈朝勇, 等. 600型建筑叠层橡胶隔震装置温度相关性及耐老化性能研究[J]. 北京工业大学学报, 2011, 37(7): 993-999.
Zhuang Xue-zhen, Zhou Fu-lin, Shen Chao-Yong, et al. Research on temperature dependence and aging rigidity of 600 laminated steel-plate-laminated-rubber-bearing isolation[J]. Journal of Beijing Polytechnic University, 2011, 37(7): 993-999.
10 庄学真, 周福霖, 徐丽, 等. 大直径建筑叠层橡胶隔震装置温度相关性及老化性能研究[J]. 西安建筑科技大学学报:自然科学版, 2009, 41(6): 791-798.
Zhuang Xue-zhen, Zhou Fu-Lin, XU Li, et al. Research on temperature dependence and aging rigidity of lead steel-plate-laminated-rubber-bearing isolation bearings for building[J]. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2009, 41(6): 791-798.
11 刘文光, 杨巧荣, 周福霖. 天然橡胶隔震支座温度相关性能试验研究[J]. 广州大学学报:自然科学版, 2002, 1(6): 51-56.
Liu Wen-guang, Yang Qiao-rong, Zhou Fu-Lin. Temperature properties of natural rubber bearings[J]. Journal of Guangzhou University(Natural Science Edition), 2002, 1(6): 51-56.
12 刘文光, 李峥嵘, 周福霖, 等. 低硬度橡胶隔震支座各种相关性及老化徐变特性[J]. 地震工程与工程振动, 2002, 22(6): 115-121.
Liu Wen-guang,Li Zheng-rong,Zhou Fu-lin,et al. Various dependence and duration properties of low stiffness rubber bearings[J]. Earthquake Engineering and Engineering Vibration, 2002, 22(6): 115-121.
13 顾浩声, 伊藤義人. 天然橡胶隔震支座的内部老化特性及预测方法[J]. 北京工业大学学报, 2012, 38(2): 186-193.
Gu Hao-sheng, Yoshito Itoh. Aging inside natural rubber bearings and prediction method[J]. Journal of Beijing University of Technology, 2012, 38(2):186-193.
14 顾浩声, 伊藤義人. 老化后天然橡胶隔震支座的性能预测[J]. 北京工业大学学报, 2012, 38(10): 1515-1521.
Gu Hao-sheng, Yoshito Itoh. Prediction of aged natural rubber isolation bearings' performances[J]. Journal of Beijing University of Technology, 2012, 38(10): 1515-1521.
15 Chou H W, Huang J S. Fatigue life prediction for circular rubber bearings subjected to cyclic compression[J]. Journal of Applied Polymer Science, 2011, 123(4): 2194-2203.
16 Chou H W, Huang J S, Li S T. Effects of thermal aging on fatigue of carbon black–reinforced EPDM rubber[J]. Journal of Applied Polymer Science, 2010, 103(2): 1244-1251.
17 Celina M, Wise J, Ottesen D K, et al. Correlation of chemical and mechanical property changes during oxygen dative degradation of neoprene[J]. Polymer Degradation & Stability, 2000, 68(2): 171-184.
18 Gu H S, Itoh Y. Aging behaviors of natural rubber in isolation bearings[J]. Advanced Materials Research, 2011, 163-167: 3343-3347.
19 张广泰, 陆东亮, 魏飞来, 等. 热氧老化条件下废旧叠层轮胎隔震垫的力学性能[J]. 华南理工大学学报:自然科学版, 2019, 47(8): 16-22.
Zhang Gung-tai, Lu Dong-liang, Wei Fei-lai, et al. Mechanial properties of scarp tire rubber pads based on thermal oxygen aging[J]. Journal of South China University of Techology(Nature Science Edition), 2019, 47(8): 16-22.
20 谭平, 徐凯, 王斌, 等. 基于新型简易隔震支座的村镇建筑隔震性能研究[J]. 土木工程学报, 2013, 46(5): 64-70.
Tan Ping, Xu Kai, Wang Bing, et al. Performance study of isolated rural buildings using novel simple isolators[J]. China Civil Engineering Journal, 2013, 46(5): 64-70.
[1] DENG Cheng-jiang, HE Xiao-cong, XING Bao-ying, WANG Yu-qi, ZENG Kai, DING Yan-fang. Mechanical properties of self-piercing riveted lap joints in dissimilar metal sheets of aluminum and copper [J]. 吉林大学学报(工学版), 2015, 45(2): 473-480.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!