Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (2): 472-477.doi: 10.13229/j.cnki.jdxbgxb20191183

Previous Articles    

First and second⁃order sensitivity method of structure static displacement

Kai MA1(),Bang-hui LI1,Kun YANG2(),Qiao-ling LIU1   

  1. 1.College of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
    2.Basic Education College of Aviation University of Air Force,Changchun 130022,China
  • Received:2019-12-24 Online:2021-03-01 Published:2021-02-09
  • Contact: Kun YANG E-mail:makai@jlu.edu.cn;Yangkuncust@163.com

Abstract:

Based on Epsilon algorithm and improved Neumann series, an approximate method for calculating the first and second order sensitivity of structural static displacement is proposed. First, the Epsilon algorithm is combined with the improved Neumann series to form a new fast approximate calculation method of static displacement, and a fast approximate calculation method of the first-order sensitivity of static displacement is derived. Then, the second-order sensitivity approximate calculation method of static displacement is further derived by combining the difference method with the first-order sensitivity method. The sensitivity calculation results of truss model and beam model show the engineering application value of the two sensitivity methods.

Key words: improved Newman series, Epsilon algorithm, sensitivity analysis, structural reanalysis

CLC Number: 

  • O342

Fig.1

Epsilon algorithm calculation flow chart"

Fig.2

Results of ignoring of odd rows"

Fig.3

Planar truss structure"

Fig.4

First order sensitivity calculation results"

Fig.5

Second-order sensitivity calculation resoult"

Table 1

First-order displacement sensitivity(example 1)"

节点编号 及位移方向精确解近似解误差/%
1-x-1.5E-05-1.50E-050.00E+00
1-y-5.739E-05-5.74E-05-0.005 74
2-x07.74E-507.74E-48
2-y05.04E-365.04E-34
3-x0.000 114 7750.000 114 7770.011 478
3-y0.000 554 1930.000 554 1940.055 419
4-x-0.001 123 375-0.001 123 378-0.112 34
4-y0.000 683 9620.000 683 9610.068 396
5-x01.11E-481.11E-46
5-y0-5.04E-36-5E-34
6-x-1.5E-05-1.50E-05-0.001 5
6-y5.739E-055.74E-050.005 74

Table 2

Second-order displacement sensitivity(example 1)"

节点编号 及位移方向精确解近似解误差/%
1-x5.812 5E-095.79E-09-0.310 2
1-y2.218 12E-082.22E-080.011 0
2-x0-2.37E-530
2-y-1.946 9E-39-1.95E-390.003 4
3-x-4.434 4E-08-4.44E-080.053 3
3-y-2.141 9E-07-2.14E-070.014 44
4-x4.341 88E-074.34E-070.012 97
4-y-2.643 5E-07-2.64E-070.012 94
5-x0-6.60E-510
5-y1.946 88E-391.95E-390.003 37
6-x5.812 5E-095.79E-09-0.310 3
6-y-2.218 1E-08-2.22E-080.011 0

Fig.6

Hexagonal tower structure with a beam section radius of 5 mm"

Fig.7

First-order sensitivity calculation result"

Table 3

First-order displacement sensitivity(example 2)"

节点编号及位移方向精确解近似解误差/%
190-x0.065 30.065 278 871-0.032
191-x0.061 50.061 475 388-0.04
94-x0.057 70.057 671 711-0.049
3-x0.053 90.053 897 051-0.005 5
4-x0.050 20.050 211 74-0.023 4

Table 4

Second-order displacement sensitivity(example 2)"

节点编号及位移方向精确解近似解误差/%
190-x-0.026 35-0.026 5-0.502 8
191-x-0.024 8-0.024 90.563
94-x-0.023 3-0.023 40.415
3-x-0.021 8-0.021 90.300 7
4-x-0.020 3-0.020 40.348 3

Fig.8

Second-order sensitivity calculation result"

1 Arora J. Servey of structural reanalysis techniques[J]. Journal of the Structural Division American Society of Civil Engineers, 1976, 102(4): 783-802.
2 Kirsch U, Rubinstein M F. Structural reanalysis by iteration[J]. Computers and Structures, 1972, 2(4): 497-510.
3 Wang H, Li E, Li G. A parallel reanalysis method based on approximate inverse matrix for complex engineering problems[J]. Journal of Mechanical Design, 2013, 135(8): 081001.
4 王琥, 种浩, 高国强, 等. 重分析方法研究进展及展望[J]. 工程力学, 2017, 34(5): 1-16.
Wang Hu, Chong Hao, Gao Guo-qiang, et al. Review of advances and outlook in reanalysis methods[J]. Engineering Mechanics, 2017, 34(5): 1-16.
5 Kirsch U. Implementation of combined approximations instructural optimization[J]. Computers and Structures, 2000, 78(1-3): 449-457.
6 Kirsch U. Approximate vibration reanalysis of structures[J]. AIAA Journal, 2003, 41(3): 504-511.
7 Kirsch U. A unified reanalysis approach for structural analysis design and optimization[J]. Structural and Multidisciplinary Optimization, 2003, 25(2): 67-85.
8 Zuo W, Yu Z, Zhao S, et al. A hybrid fox and Kirsch's reduced basis method for structural static reanalysis[J]. Structural and Multidisciplinary Optimization, 2012, 46(2): 261-272.
9 Sun R, Liu D, Xu T, et al. New adaptive technique of Kirsch method for structural reanalysis[J]. AIAA Journal, 2014, 52(3): 486-495.
10 刘寒冰, 陈塑寰. 结构动特性灵敏度分析的边界元摄动法[J]. 振动与冲击, 1993, 12(3): 25-30.
Liu Han-bing, Chen Su-huan. Boundary element perturbation method for shape design sensitivity analysis of structural dynamic character[J],Journal of Vibration and Shock, 1993, 12(3): 25-30.
11 Kirsch U. Approximate vibration reanalysis of structures[J]. AIAA Journal, 2003, 41(3): 504-511.
12 Lederer C, Altstadt S, Andriamonje S. An efficient reanalysis methodology for probabilistic vibration of largescale structures[J]. Journalof Mechanical Design, 2009, 131(5): 051007.
13 Xu T, Guo G, Zhang H. Vibration reanalysis using frequency-shift combined approximations[J]. Structural and Multi-disciplinary Optimization, 2011, 44(2): 235-246.
14 Gao G, Wang H, Li G. An adaptive time-based global method for dynamic reanalysis[J]. Structural and Multi-disciplinary Optimization, 2013, 48(2): 355-365.
[1] Yi JIA,Ren-da ZHAO,Yong-bao WANG,Fu-hai LI. Sensitivity analysis of viscous damper parameters for multi⁃span and long⁃unit continuous girder bridges [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1871-1883.
[2] CHEN Dong-hui, LYU Jian-hua, LONG Gang, ZHANG Yu-chen, CHANG Zhi-yong. Static rollover stability of semi-mounted agricultural machinery based on ADAMS [J]. 吉林大学学报(工学版), 2018, 48(4): 1176-1183.
[3] ZHANG Ze-xing, CHEN Guo-ying, ZONG Chang-fu. Objective evaluation indices of steering performance for EPS based on sensitivity analysis [J]. 吉林大学学报(工学版), 2015, 45(4): 1043-1048.
[4] KE Jun, CHENG Zhi-yong, SHI Wen-ku, SHI Teng, ZHANG Yi-jing, GUO Fu-xiang. Modal analysis and structure optimization of bus floor based on floor vibration control [J]. 吉林大学学报(工学版), 2015, 45(3): 719-725.
[5] CHEN Shu-ming, PENG Deng-zhi, WANG Deng-feng, LIANG Jie. Structural-acoustic coupling and optimal experimental design for automotive interior low frequency noise [J]. 吉林大学学报(工学版), 2014, 44(6): 1550-1556.
[6] ZHAO Shi-jia, XU Tao, CHEN Wei, TAN Li-hui. Efficient approach for modal sensitivity analysis for near defective systems [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 497-499.
[7] XU Tao, QIU Bing, CHENG Fei, JIN Yan-zhong, JIANG Yong-zhou, ZHAO Shi-jia. Structural reanalysis algorithm study of topological modifications based on even lines Epsilon accelerated method [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 246-249.
[8] ZHANG Ying-shuang, WANG Guo-qiang, WANG Ji-xin, HOU Xiao-ting, et al. Load spectrum compiling and fatigue life prediction of wheel loader axle shaft [J]. 吉林大学学报(工学版), 2011, 41(6): 1646-1651.
[9] LI Hong-Yan, WANG Yu-Xin, DUAN Chang-Chun. Impact of atmospheric circulation and its sensitivity analysis of Nenjiang river valley runoff [J]. 吉林大学学报(工学版), 2010, 40(03): 879-0883.
[10] GAO Jin, SONG Chuan-Xue. Influence of rubber bushing stiffness on suspension performance [J]. 吉林大学学报(工学版), 2010, 40(02): 324-0329.
[11] GAO Shu-Na, DENG Zhao-Xiang, HU Yu-Mei. Optimization of car interior low frequency noise based on sensitivity analysis [J]. 吉林大学学报(工学版), 2009, 39(05): 1130-1136.
[12] WANG Xu,CHEN Yong-gang,YANG Yin-sheng . DEA-DA model with interval numbers and its sensitivity analysis [J]. 吉林大学学报(工学版), 2009, 39(03): 716-0720.
[13] CHENG Yong-chun,TAN Guo-jin,LIU Han-bing,FU Cong . Damage identification of bridge structure based on statistical properties of eigen-solution [J]. 吉林大学学报(工学版), 2008, 38(04): 812-816.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!