Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (6): 1871-1883.doi: 10.13229/j.cnki.jdxbgxb20180686

Previous Articles     Next Articles

Sensitivity analysis of viscous damper parameters for multi⁃span and long⁃unit continuous girder bridges

Yi JIA1(),Ren-da ZHAO1,Yong-bao WANG1,Fu-hai LI1,2()   

  1. 1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031,China
    2. National Engineering Laboratory for Technology of Geological Disaster Prevention in Land Transportation, Chengdu 610031,China
  • Received:2018-07-01 Online:2019-11-01 Published:2019-11-08
  • Contact: Fu-hai LI E-mail:jiayi0715vip@sina.com;qixingye2003@163.com

Abstract:

From the aspect of reducing seismic response of fixed pier, the vibration absorption measures of multi-span and long-unit continuous girder bridge were exploded. Taking the main bridge of Hanjiang Bridge with the span of 55+4×90+55 m as an engineering background, the seismic performance of the bridge influenced by viscous damper were studied. The finite element model for dynamic analysis of the bridge was established based on ANSYS. The mechanical behavior of viscous damper was simulated by Maxwell Model. Three artificial seismic waves with the exceedance probability of 2.5% in 50 years were chosen as the earthquake excitation. By using nonlinear dynamic time history analysis method, the parameter sensitivity analysis on velocity exponent α and damping coefficient C of the viscous damper was investigated. At last, the results were compared with the seismic response without considering the viscous damper model. All the results shown that saturated and closed lag circle of viscous damper under the action of earthquake was formed; The lag circle has regular shape, large envelope area, so that the energy dissipation effect had been proved successful. The internal force of bottom of fixed pier and displacement of top of fixed pier decreased with the increase of damping coefficient. And they also increased with the increase of velocity index. The velocity exponent α and damping coefficient C of the viscous damper were recommended as 0.4 and 4000 kN/(m?s-1)0.4 by considering the damping effect of viscous damper. Compared with the model without viscous damper, the bending moment and shearing average damping rate of the fixed pier were 44.35% and 42.52%, respectively. The overall horizontal seismic load on the fixed pier was also reduced by about 25%, and all piers bear more uniform horizontal seismic load, the load of all piers were more reasonable. In addition, it also prevents or reduces the collision between the superstructure along the bridge direction. And the fall-beam destruction in the earthquake is avoided.

Key words: bridge engineering, multi-span and long-unit continuous girder bridge, non-linear dynamic time-history analysis, seismic mitigation design, viscous damper, mechanical parameter, sensitivity analysis

CLC Number: 

  • U448.21

Fig.1

Elevation of Hanjiang Bridge(unit:cm)"

Fig.2

Finite element model"

Table 1

Elastic coefficient of each soil layer of 10# pile foundation"

深度/m m /(kN·m-4 m/(kN·m-4 顺桥向/(kN·?m-1 横桥向/(kN·m-1
9.249 10 000 25 000 1 166 408.6 1 166 408.6
11.249 10 000 25 000 14 49 208.6 1 449 208.6
13.249 10 000 25 000 1 732 008.6 1 732 008.6
15.249 10 000 25 000 2 014 808.6 2 014 808.6
17.249 10 000 25 000 2 297 608.6 2 297 608.6
19.249 10 000 25 000 2 580 408.6 2 580 408.6
21.249 20 000 50 000 5 726 417.2 5 726 417.2
23.249 5 000 12 500 1 573 004.3 1 573 004.3
25.249 12 000 30 000 4 114 570.3 4 114 570.3
27.249 20 000 50 000 7 423 217.2 7 423 217.2
31.249 20 000 50 000 16 543 234.4 17 108 834.4
35.249 20 000 50 000 18 805 634.4 19 371 234.4
39.249 20 000 50 000 21 068 034.4 21 633 634.4
43.249 20 000 50 000 23 330 434.4 23 896 034.4
47.249 20 000 50 000 25 592 834.4 26 158 434.4
51.249 20 000 50 000 27 855 234.4 28 420 834.4
55.249 20 000 50 000 30 117 634.4 30 683 234.4
59.249 20 000 50 000 32 380 034.4 32 945 634.4
63.249 20 000 50 000 34 642 434.4 35 208 034.4
67.249 20 000 50 000 36 904 834.4 37 470 434.4
71.249 20 000 50 000 39 167 234.4 39 732 834.4
75.249 20 000 50 000 41 429 634.4 41 995 234.4
79.249 20 000 50 000 43 692 034.4 44 257 634.4

Table 2

Parameters of acceleration response spectrum"

超越概率水准 T g(s) γ S max(g)
50年2.5% 0.85 1.000 0.65

Fig.3

Artificial seismic waves"

Fig.4

Comparison between design response spectrum and response spectrum of artificial seismic wave"

Fig.5

Zoning and stress, strain distribution of rectangular cross section"

Fig.6

Flow chart of moment and curvature analysis"

Fig.7

Skeleton curve of pier section"

Fig.8

Moment curvature curve of the pier at bottom’ cross section and equivalent double line model"

Fig.9

FVD dynamic characteristic curve"

Fig.10

Maxwell model"

Fig.11

Mechanical model of COMBIN37"

Table 3

Condition of optimization analysis of viscous damper’ s mechanical parameter"

工况 速度指数 阻尼系数/ [kN·(m·s–1)α]
1 0.2 1000
2 0.4 1000
3 0.6 1000
4 0.8 1000
5 1.0 1000
6 0.2 2000
7 0.4 2000
8 0.6 2000
9 0.8 2000
10 1.0 2000
11 0.2 3000
12 0.4 3000
13 0.6 3000
14 0.8 3000
15 1.0 3000
16 0.2 4000
17 0.4 4000
18 0.6 4000
19 0.8 4000
20 1.0 4000
21 0.2 5000
22 0.4 5000
23 0.6 5000
24 0.8 5000
25 1.0 5000

Fig.12

Internal force response of pier No.12 vs. mechanical parameter of damper"

Fig.13

Displacement response of pier vs. mechanical parameter of damper"

Fig.14

Damper response of pier No.10 vs. mechanical parameter of damper"

Fig.15

Relative damping ratio of structural response under different working conditions"

Fig.16

Longitudinal internal force’s history curves of pier No.12 at the bottom"

Fig.17

Displacement and time curve"

Fig.18

Hysteresis curve of fluid viscous damper"

Table 4

Internal force response of pier and relative damping ratio"

墩号 墩底顺桥向弯矩值/105(kN·m) 墩底顺桥向剪力值/104 kN
有阻尼器 无阻尼器 相对减震率/% 有阻尼器 无阻尼器 相对减震率/%
9 0.279 0.332 15.96 0.164 0.213 23.00
10 1.061 0.275 -285.82 0.762 0.261 -191.95
11 1.375 2.560 46.29 0.591 1.070 44.77
12 1.506 2.710 44.43 0.636 1.100 42.18
13 1.655 2.870 42.33 0.677 1.140 40.61
14 1.369 0.573 -138.92 0.545 0.301 -81.06
15 0.419 0.397 -5.54 0.200 0.190 -5.26

Table 5

Displacement response of pier and relative damping ratio"

墩号 墩顶顺桥向位移值/mm

墩梁顺桥向相对位

移值/mm

有阻尼器 无阻尼器 相对减震率/% 有阻尼器 无阻尼器 相对减震率/%
9 117 139 15.83 205 368 44.29
10 83 27 -207.41 124 317 60.88
11 165 310 46.77 0 0 /
12 169 306 44.77 0 0 /
13 174 302 42.38 0 0 /
14 148 59 -150.85 65 287 77.35
15 231 218 -5.96 224 374 40.11
1 王克海 . 桥梁抗震研究[M]. 2版.北京:中国铁道出版社, 2014.
2 张常勇, 王志英, 王宏博 . 长联大跨连续钢桁梁桥减隔震设计研究[J]. 公路交通科技, 2015, 32(8): 80-88.
2 Zhang Chang-yong , Wang Zhi-ying , Wang Hong-bo . Study on seismic mitigation and isolation design for a long-span continuous steel truss beam bridge[J]. Journal of Highway and Transportation Research and Development, 2015, 32(8): 80-88.
3 杨喜文, 李建中, 雷昕弋 . 多孔大跨度连续梁桥减隔震技术应用研究[J]. 中国公路学报, 2010, 23(6): 58-65.
3 Yang Xi-wen , Li Jian-zhong , Lei Xin-yi . Research on application of seismic isolation techniques to multiple and large-span continuous girder bridge[J]. China Journal of Highway and Transport, 2010, 23(6): 58-65.
4 Priestly M J N , Seible F , Calvi G M . Seismic design and retrofit of bridges[M]. New York: John Wiley and Sons, 1996: 12-29.
5 王志强, 胡世德, 范立础 . 东海大桥粘滞阻尼器参数研究[J]. 中国公路学报, 2005, 18(3): 37-42.
5 Wang Zhi-qiang , Hu Shi-de , Fan Li-chu . Research on viscous damper parameters of donghai bridge[J]. China Journal of Highway and Transport, 2005, 18(3): 37-42.
6 Martinez M , Rodrigo M , Romero M L . An optimum retrofit strategy for moment resisting frames with nonlinear viscous dampers for seismic applications[J]. Engineering Structure, 2003, 25(7): 913-925.
7 Pekcan G , Mander J B , Chen S S . Fundamental consideration for the design of nonlinear viscous dampers[J]. Earthquake Engineering & Structural Dynamics, 1999, 28(11): 1405-1425.
8 Lin W H , Anil K C . Earthquake response of elastic SDF systems with non-linear fluid viscous dampers[J]. Earthquake Engineering & Structural Dynamics, 2002, 31(9): 1623-1642.
9 Nicos M , Constantinous M C , Dargush G F . Analytical model of viscoelastic fluid dampers[J]. Journal of Structural Engineering, 1993, 119(11): 3310-3325.
10 张常勇, 王文斌, 姚宗健 . 大跨度斜拉桥顺桥向阻尼约束体系研究[J]. 桥梁建设, 2014, 44(6): 75-80.
10 Zhang Chang-yong , Wang Wen-bin , Yao Zong-jian . Study of longitudinal damping restraint systems for a long span cable-stayed bridge[J]. Bridge Construction, 2014, 44(6): 75-80.
11 丁幼亮, 耿方方, 葛文浩,等 . 多塔斜拉桥风致抖振响应的粘滞阻尼器控制研究[J]. 工程力学, 2015, 32(4): 130-137.
11 Ding You-liang , Geng Fang-fang , Ge Wen-hao , et al . Control of wind-induced buffeting responses of a multi-tower cable-stayed bridge using viscous dampers[J]. Engineering Mechanics, 2015, 32(4): 130-137.
12 刘俊 . 高烈度区多跨刚构连续梁桥减隔震设计研究[J]. 铁道工程学报, 2013, 30(5): 40-46.
12 Liu Jun . Research on seismic isolation design of multi-span rigid frame-continuous girder bridge in high seismic intensity area[J]. Journal of Railway Engineering Society, 2013, 30(5): 40-46.
13 王波, 马长飞, 刘鹏飞,等 . 基于随机地震响应的斜拉桥粘滞阻尼器参数优化[J]. 桥梁建设, 2016, 46(3): 17-22.
13 Wang Bo , Ma Chang-fei , Liu Peng-fei , et al . Parameter optimization of viscous damper for cable-stayed bridge based on stochastic seismic responses[J]. Bridge Construction, 2016, 46(3): 17-22.
14 张文学, 黄荐, 王景景 . 斜拉桥面相对高度对粘滞阻尼器减震效果影响研究 [J]. 振动与冲击, 2015, 34(16): 43-47.
14 Zhang Wen-xue , Huang Jian , Wang Jing-jing . Effect of cable-stayed bridge’s relative height of deck on viscous damper’s seismic reduction behavior [J]. Journal of Vibration and Shock, 2015, 34(16): 43-47.
15 焦驰宇, 孙广龙, 陈永祁,等 . 液体粘滞阻尼器在市政桥梁抗震加固中的应用[J]. 工程力学, 2014, 31(增刊1): 177-181.
15 Jiao Chi-yu , Sun Guang-long , Chen Yong-qi , et al . Application of fluid viscous damper to seismic strengthening of municipal bridges[J]. Engineering Mechanics, 2014, 31(Sup.1): 177-181.
16 毛玉东, 李建中 . 大跨连续梁桥纵向减震机理和减震效果分析[J]. 同济大学学报:自然科学版, 2016, 44(2): 185-191.
16 Mao Yu-dong , Li jian-zhong . Analysis of seismic mitigation mechanism and effect on longitudinal direction of long-span continuous bridges[J]. Journal of Tongji University (Natural Science), 2016, 44(2): 185-191.
17 贾毅, 赵人达, 廖平, 等 . 高烈度地区多跨长联连续梁桥抗震体系研究[J]. 桥梁建设, 2017, 47(5): 41-46.
17 Jia Yi , Zhao Ren-da , Liao Ping , et al . Research on seismic system for multi-span and long-unit continuous girder bridge in high intensity region [J]. Bridge Construction, 2017, 47(5): 41-46.
18 恵迎新, 毛明杰, 刘海峰, 等 . 跨断层桥梁结构地震响应影响[J]. 吉林大学学报:工学版, 2018, 48(6): 1725-1734.
18 Hui Ying-xin , Mao Ming-jie , Liu Hai-feng , et al . Influence of structural seismic response of bridges crossing active fault [J]. Journal of Jinlin University (Engineering and Technology Edition), 2018, 48(6): 1725-1734.
19 谢肖礼, 王波, 张伟峰, 等 . 罕遇地震作用下高墩连续刚构桥双重非线性抗震分析 [J]. 工程力学, 2009, 26(4): 113-118.
19 Xie Xiao-li , Wang Bo , Zhang Wei-feng , et al . Double nonlinear aseismic analysis of high-rise pier and rigid frame bridges under rear earthquake[J]. Engineering Mechanics, 2009, 26(4): 113-118.
20 禚一, 王菲 . 罕遇地震下城际铁路连续梁桥延性抗震设计[J]. 铁道工程学报, 2012, 29(4): 66-71,112.
20 Zhuo Yi , Wang Fei . Seismic ductility design for intercity railway continuous bridge under rare earthquake[J]. Journal of Railway Engineering Society, 2012, 29(4): 66-71,112.
21 JTG/T B02-01-2008. 公路桥梁抗震设计细则[S].
22 柳春光 . 桥梁结构地震响应与抗震性能分析[M]. 北京:中国建筑工业出版社, 2009.
23 何杰 . FVD 阻尼系数C和阻尼指数α 对桥梁减震效果影响研究[J]. 公路工程, 2012, 37(6): 89-92,96.
23 He Jie . Analysis of the influence of FVD damping coefficient C and damping exponent α on bridge seismic absorption effect[J]. Highway Engineering, 2012, 37(6): 89-92,96.
24 葛继平, 王志强 . 干接缝节段拼装桥墩集中塑性铰模型的地震响应分析[J]. 工程力学, 2010, 27(8): 185-190.
24 Ge Ji-ping , Wang Zhi-qiang . Seismic performance studies of segmental bridge columns with match-cast dry joints using concentrated plastic hinge method[J]. Engineering Mechanics, 2010, 27(8): 185-190.
25 刘怀林, 兰海燕 . Ansys 在大跨径桥梁阻尼器选型中的应用[J]. 公路交通技术, 2011(6): 44-48.
25 Liu Huai-lin , Lan Hai-yan . Application of Ansys in type selection of dampers for large-span bridges[J]. Technology of Highway and Transport, 2011(6): 44-48.
26 姜浩, 郭学东 . 基于地震激励的混凝土桥梁模态参数识别[J]. 吉林大学学报:工学版, 2011, 41(增刊2): 185-188.
26 Jiang Hao , Guo Xue-dong . Concrete bridge modal parameter identification under seismic excitations[J]. Journal of Jinlin University (Engineering and Technology Edition), 2011, 41(Sup.2): 185-188.
[1] Chun-ling ZHONG,Dong LIANG,Yun-long ZHANG,Jing WANG. Calculation of natural vibration frequency of simply supported beam strengthened by external prestressing [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1884-1890.
[2] Lun-hua BAI,Rui-li SHEN,Xing-biao ZHANG,Lu WANG. In-plane stability of self-anchored suspension bridge [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1500-1508.
[3] Shi⁃cheng WAN,Qiao HUANG,Jian GUAN,Zhao⁃yuan GUO. Strengthening of continuous steel⁃concrete composite beams in negative moment region using prestressed carbon fiber⁃reinforced polymer plates [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1114-1123.
[4] Jin⁃gang ZHAO,Ming ZHANG,Yu⁃lin ZHAN,Ming⁃zhi XIE. Damage criterion of reinforced concrete pier based on plastic strain energy density [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1124-1133.
[5] Wan⁃heng LI,Lin SHEN,Shao⁃peng WANG,Shang⁃chuan ZHAO. Damage assessment of bridge construction based onmulti⁃stage subregion mobile test [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 773-780.
[6] HUI Ying-xin,MAO Ming-jie,LIU Hai-feng,ZHANG Shang-rong. Influence of structural seismic response of bridges crossing active fault [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1725-1734.
[7] CHEN Dong-hui, LYU Jian-hua, LONG Gang, ZHANG Yu-chen, CHANG Zhi-yong. Static rollover stability of semi-mounted agricultural machinery based on ADAMS [J]. 吉林大学学报(工学版), 2018, 48(4): 1176-1183.
[8] ZHENG Yi-feng, ZHAO Qun, BAO Wei, LI Zhuang, YU Xiao-fei. Wind resistance performance of long-span continuous rigid-frame bridge in cantilever construction stage [J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[9] GONG Ya-feng, HE Yu-long, TAN Guo-jin, SHEN Yang-fan. Anti-overturning stability analysis for three-span continuous curved girder bridge with single column pier [J]. 吉林大学学报(工学版), 2018, 48(1): 133-140.
[10] WEI Zhi-gang, LIU Han-bing, SHI Cheng-lin, GONG Ya-feng. Calculation of transverse distribution coefficient of simply supported beam bridge with effect of bridge deck pavement [J]. 吉林大学学报(工学版), 2018, 48(1): 105-112.
[11] WEI Zhi-gang, SHI Cheng-lin, LIU Han-bing, ZHANG Yun-long. Dynamic characteristics of steel-concrete composite simply supported beam under vehicles [J]. 吉林大学学报(工学版), 2017, 47(6): 1744-1752.
[12] ZHANG Yun-long, LIU Zhan-ying, WU Chun-li, WANG Jing. Static and dynamic responses of steel-concrete composite beams [J]. 吉林大学学报(工学版), 2017, 47(3): 789-795.
[13] LIU Han-bing, SHI Cheng-lin, TAN Guo-jin. Finite element solution of composite beam with effect of shear slip [J]. 吉林大学学报(工学版), 2016, 46(3): 792-797.
[14] TAN Guo-jin, LIU Zi-yu, WEI Hai-bin, WANG Long-lin. Calculation of natural frequency of simply supported beam bridge reinforced with eccentric prestressed tendons [J]. 吉林大学学报(工学版), 2016, 46(3): 798-803.
[15] CAO Shan-shan, LEI Jun-qing. Fatigue life prediction of steel structure considering interval uncertainty [J]. 吉林大学学报(工学版), 2016, 46(3): 804-810.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Dong Yun-feng,Qu Xing-tian,Shen Chuan-liang, Dong Jing-shi,Wu Bo-da . Servovalve driven by piezoelectric ceramics[J]. 吉林大学学报(工学版), 2006, 36(05): 678 -0680 .
[2] Zhang Ying, Duan Guang-ren, He Liang . Robust stability of a class of discretetime switched systems with timedelay [J]. 吉林大学学报(工学版), 2006, 36(05): 740 -0744 .
[3] Xuan Zhao-zhi, Li Guo-hui, Lu Jia, Zhou Fang. Application of wavelet analysis in CO2 welding control[J]. 吉林大学学报(工学版), 2006, 36(04): 480 -483 .
[4] Zang Chuanyi,Ma Hongan,Tian Yu,Xiao Hongyu,Jia Xiaopeng. Growth of Highquality Gem Diamonds with Different Seed Facets[J]. 吉林大学学报(工学版), 2006, 36(01): 10 -0013 .
[5] . [J]. 吉林大学学报(工学版), 2005, 35(03): 254 -257 .
[6] Wang Shusen, Cheng Yongchun,Liu Hanbing ,Li Chunliang. Accurate method for measuring bonding strength of interface between carbon fiber and concrete[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 53 -0055 .
[7] Nie Yuan-fei,Ge Jian-hua,Wang Yong . Impact of nonideal SNR estimation on Turbo equalizer performance[J]. 吉林大学学报(工学版), 2007, 37(04): 875 -880 .
[8] WANG Yunpeng, WANG Zhanzhong, LU Yingrong, QIAN Xiaoxiao. Logistics Decision Support System for Multimodal Transportation Based on Data Warehouse[J]. 吉林大学学报(工学版), 2005, 35(06): 641 -0645 .
[9] LIU Lan-tao,CHEN Xiao-guang,WU Wen-fu,PAN Zhi . Near infrared detector with three wavelengths for grain protein content[J]. 吉林大学学报(工学版), 2009, 39(01): 93 -97 .
[10] ZHENG Ya-yu,TIAN Xiang,CHEN Yao-wu. Visual attention model based on fussion of spatiotemporal features[J]. 吉林大学学报(工学版), 2009, 39(06): 1625 -1630 .