Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (2): 631-637.doi: 10.13229/j.cnki.jdxbgxb20191141

Previous Articles    

Emission mitigation analysis of geosynthetic⁃reinforced walls

Fei ZHANG1,2(),Yu-ming ZHU1,2,Shang-chuan YANG3,Shu-mao WANG4   

  1. 1.Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering,Hohai University,Nanjing 210098,China
    2.Geotechnical Research Institute,Hohai University,Nanjing 210098,China
    3.Key Laboratory of High-speed Railway Engineering,Ministry of Education,Southwest Jiaotong University,Chengdu 610031,China
    4.East China Electric Power Design Institute of China Power Engineering Consulting Group,Shanghai 200063,China
  • Received:2019-12-15 Online:2021-03-01 Published:2021-02-09

Abstract:

Two types of Geosynthetic-reinforced Walls (GRWs) are considered here to assess their emission reduction performance based on stability design. Comparing with the gravity retaining walls, the influences of various design parameters are further investigated on the carbon emission reduction performance. Using GRWs can reduce carbon emission by at least 50%. Due to the excellent anti-seismic property of GRWs, the carbon emission reduction performance increases as the horizontal seismic acceleration increases, but it is insignificant. The carbon emission reduction performance of photosynthesis increases linearly with the carbon fixation years. Vegetated rap-around GRWs uses plants rather than panels to make its emission reduction rate exceed 90%. When the constructions of GRWs is completed, about 3~10 years later, the carbon emission mitigation rate can reach 100%, thus acheiving green ecological support.

Key words: geotechnical engineering, emission reduction characteristics, geosynthetics, reinforced wall, seismicity

CLC Number: 

  • TU4

Table 1

Carbon emission factors of various materials in retaining walls"

材料CO2排放因子单位
2.51kg CO2e.t-1
碎石2.18kg CO2e.t-1
黏土2.69kg CO2e.t-1
柴油72.59t CO2.TJ-1
C25混凝土414.82kg CO2e.m-3
热轧碳钢钢筋2340.00kg CO2e.t-1
预制混凝土面板336.00kg CO2e.m-1
土工格栅(HDPE)1.36kg CO2e.m-2

Table 2

Design parameters of retaining walls in safety"

稳定性安全系数基本组合地震作用组合
抗滑移稳定性系数1.31.1
抗倾覆稳定性系数1.61.2
基本合力偏心距≤0.17≤0.22

Table 3

Main material consumption quantities of retaining walls"

墙高/m墙后填土内摩擦角/(°)重力式挡墙面板式加筋土挡墙
混凝土体/m3填土体积/m3预制面板块数/块填土体积/m3土工格栅铺设面积/m2
2252.7412.001512.0015.00
302.2812.001512.0012.50
351.8812.001512.0012.00
401.5212.001512.0010.00
3255.1218.002318.0022.08
304.2818.002318.0017.71
353.5318.002318.0017.50
402.9318.002318.0017.50
4258.2024.003024.0039.38
306.8024.003024.0034.21
355.6024.003024.0031.00
404.7624.003024.0031.00
52511.9830.003830.0057.07
309.9330.003830.0047.71
358.1830.003830.0047.71
407.0330.003830.0047.71
62516.3836.004636.0083.04
3013.6236.004636.0068.16
3511.2236.004636.0068.00
409.7236.004636.0068.00
72521.5342.005342.00113.81
3017.8942.005342.0093.48
3514.7442.005342.0093.10
4012.8542.005342.0093.10
82527.2848.006154.24169.50
3022.7248.006148.00140.00
3518.7248.006148.00134.40
4016.3248.006148.00134.40

Fig.1

Illustrations of geosynthetic-reinforced walls"

Table 4

Annual gross carbon sequestration of slope-protecting plants"

植物名称年固碳推估值/[(kg CO2)?m-2?a-1]
百喜草10.12
白花三叶草8.16
结缕草7.81
假俭草5.20
意大利黑麦草3.47

Table 5

Main material consumption quantities of retaining walls (seismic events)"

kh/g墙高/m墙后填土内摩擦角/(°)重力式挡墙面板式加筋土挡墙
混凝土体积/m3填土体积/m3预制面板块数/块填土体积/m3土工格栅铺设面积/m2
0.054306.8024.003024.0035.09
63013.6236.004536.0074.72
83022.7248.006149.12153.50
0.104306.8024.003024.0037.95
63013.6236.004536.0081.60
83022.7248.006153.84168.25
0.154306.8424.003024.0040.81
63013.6836.004536.0088.48
83022.7248.006158.72183.50
0.204307.4424.003024.0043.78
63014.8836.004536.0095.52
83024.8048.006163.60198.75
0.304307.9624.003024.0050.05
63015.9036.004541.46110.56
83026.4848.006174.16231.75

Fig.2

Carbon dioxide emission mitigation rate of GRWs in various heights and internal friction angles"

Fig.3

Carbon dioxide emission mitigation rate of GRWs subjected to horizontal seismic excitations"

Fig.4

Carbon dioxide emission mitigation rate of GRWs wrapped with various plants"

1 Solomon S, Plattner G K, Knutti R, et al. Irreversible climate change due to carbon dioxide emissions[J]. PNAS, 2009, 106(6): 1704-1709.
2 Roger P J, Wigley T, Green C. Dangerous assumptions[J]. Nature, 2008, 452: 531-532.
3 王微, 林剑艺, 崔胜辉, 等. 碳足迹分析方法研究综述[J]. 环境科学与技术, 2010, 33(7): 71-78.
Wang Wei, Lin Jian-yi, Cui Sheng-hui, et al. An overview of carbon footprint analysis[J]. Environmental Science & Technology, 2010, 33(7): 71-78.
4 牛秀敏. 全要素视角下的中国碳排放效率区域差异性及收敛性研究[D]. 成都: 西南财经大学统计学院, 2016.
Niu Xiu-min. Research on reginal difference and convergence of China's carbon emission efficiency from perspective of total factors[D]. Chengdu: School of Statistics, Southwestern University Of Finance And Economics, 2016.
5 陈莎, 崔东阁, 张慧娟. 建筑物碳排放计算方法及案例研究[J].北京工业大学学报, 2016, 42(4): 594-600.
Chen Sha, Cui Dong-ge, Zhang Hui-juan. Calculation of carbon dioxide emissions from buildings and case study[J]. Journal of Beijing University of Technology, 2016, 42(4): 594-600.
6 郑晓云, 徐金秀. 基于LCA的装配式建筑全生命周期碳排放研究——以重庆市某轻钢装配式集成别墅为例[J]. 建筑经济, 2019, 40(1): 107-111.
Zheng Xiao-yun, Xu Jin-xiu. Research on carbon emissions of assembly building life cycle based on LCA: take a light steel assembly integrated villa in chongqing as an example[J]. Construction Economy, 2019, 40(1): 107-111.
7 陈进杰, 王兴举, 王祥琴, 等. 高速铁路全生命周期碳排放计算[J]. 铁道学报, 2016, 38(12): 47-55.
Chen Jin-jie, Wang Xing-ju, Wang Xiang-qin, et al. Calculation of carbon dioxide emissions in the life cycle of high-speed railway[J]. Journal of The China Railway Society, 2016, 38(12): 47-55.
8 宋晓东, 付延冰, 刘恒斌, 等. 基于生命周期评价的高速铁路减排效果[J]. 中南大学学报: 自然科学版, 2014, 45(9): 3301-3307.
Song Xiao-dong, Fu Yan-bing, Liu Heng-bin, et al. Carbon dioxide emission reduction of high-speed railway[J]. Journal of Central South University (Science and Technology), 2014, 45(9): 3301-3307.
9 姬文哲. 天津市交通碳排放计算与减排对策研究[D]. 天津: 天津大学管理与经济学部, 2014.
Ji Wen-zhe. Research and countermeasures on carbon emission of Tianjin transport[D]. Tianjin: College of Management and Economy, Tianjin University, 2014.
10 陈进杰, 高桂凤, 王兴举, 等. 城市轨道交通全寿命周期能耗计算方法[J]. 交通运输工程学报, 2014, 14(4): 89-97.
Chen Jin-jie, Gao Gui-feng, Wang Xing-ju, et al. Calculation method of whole life-cycle energy consumption for urban rail transit[J]. Journal of Traffic and Transportation Engineering, 2014, 14(4): 89-97.
11 黎礼刚, 李凌云, 周紧东, 等. 护岸工程材料综合能耗和碳排放计算及评价[J]. 人民长江, 2012, 43(7): 50-55.
Li Li-gang, Li Ling-yun, Zhou Jin-dong, et al. Calculation and evaluation of comprehensive energy consumption and carbon emissions of revetment works materials[J]. Yangtze River, 2012, 43(7): 50-55.
12 徐安, 乔向明, 曹海涛, 等. 在用汽车温室气体CO2排放分布规律及其建模[J]. 吉林大学学报: 工学版, 2010, 40(2): 382-385.
Xu An, Qiao Xiang-ming, Cao Hai-tao, et al. Distribution pattern and modeling of in-use vehicle greenhouse gas CO2 emission[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 40(2): 382-385.
13 陈建峰, 柳军修, 石振明. 软土地基加筋土挡墙数值模拟及稳定性探讨[J]. 岩石力学与工程学报, 2012, 31(9): 1928-1935.
Chen Jian-feng, Liu Jun-xiu, Shi Zhen-ming. Numerical simulation and stability discussion of a reinforced soil retaining wall on soft foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 1928-1935.
14 周文洋. 多级加筋土挡墙内部稳定性计算方法研究[D]. 成都: 西南交通大学土木工程学院, 2016.
Zhou Wen-yang. Study on internal stability of the multiple stages reinforced soil walls[D]. Chengdu: School of Civil Engineering, Southwest Jiaotong University, 2016.
15 Han J, Leshchinsky D. Limit equilibrium and continuum mechanics-based numerical methods for analyzing stability of MSE walls[C]∥Proceedings of 17th Engineering Mechanics Conference, Newark, 2004.
16 陈帝升, 王志杰, 蒲梦龙, 等. 加筋挡土结构碳排放计算[J]. 四川建筑, 2018, 38(4): 229-232.
Chen Di-sheng, Wang Zhi-jie, Pu Meng-long, et al. Calculation of carbon emission from reinforced retaining structures[J]. Sichuan Architecture, 2018, 38(4): 229-232.
17 詹璨荣. 以二氧化碳排放量评估返包植生式加劲土挡土墙[D]. 台北: 国立台湾科技大学营建工程系, 2010.
Zhan Can-rong, Evaluation of vegetated rap-around geosynthetic-reinforced retaining walls based upon CO2emission[D]. Taibei: Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, 2010.
18 IPCC2006. 2006年IPCC国家温室气体清单指南[M]. 日本: 全球战略研究所, 2006.
19 ,建筑物碳排放计算标准[S].
20 杨广庆, 徐超, 张孟喜, 等. 土工合成材料加筋土结构应用技术指南[M]. 北京: 人民交通出版社, 2016.
21 董坤涛. 基于钢筋混凝土结构的建筑物二氧化碳排放研究[D]. 青岛: 青岛理工大学管理学院, 2011.
Dong Kun-tao. Study on the building carbon dioxide emissions based on reinforced concrete structures[D]. Qingdao: School of Management Engineering, Qingdao University of Technology, 2011.
22 张春霞, 章蓓蓓, 黄有亮, 等. 建筑物能源碳排放因子选择方法研究[J]. 建筑经济, 2010(10): 106-109.
Zhang Chun-xia, Zhang Bei-bei, Huang You-liang, et al. Research on the selection method of building energy carbon emission factor[J]. Construction Economy, 2010(10): 106-109.
23 FHWA—NHI—10—024. Design and construction of mechanically stabilized earth walls and reinforced soil slope[S].
24 . 建筑边坡工程技术规范[S].
25 王云鹏, 徐广彬, 李世武, 等. 高速公路边坡绿化植物对车辆排放的敏感性[J]. 吉林大学学报: 工学版, 2008, 38(): 50-54.
Wang Yun-peng, Xu Guang-bin, Li Shi-wu, et al. Research on the sensitivity of highway-side plants affected by vehicle emissions[J]. Journal of Jilin University (Engineering and Technology Edition), 2008, 38(Sup.2): 50-54.
26 . 建筑抗震设计规范[S].
[1] Wen-bin TAO,Jun-ling HOU,Tie-lin CHEN,Bin TANG. Mechanical analysis of full⁃length anchorage with high pretension post⁃tensioning method [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 631-640.
[2] Deng-hui GAO,Yi-chuan XING,Min-xia GUO,Ai-jun ZHANG,Xian-tao WANG,Bao-hong MA. Modified hyperbola model of interface between unsaturated remolded loess and concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 156-164.
[3] GU Hai-dong,LUO Chun-hong. Experiment on soil arching effect of pit supporting structure with scattered row piles and soil nail wall [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1712-1724.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!