Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (5): 1897-1907.doi: 10.13229/j.cnki.jdxbgxb20200487

Previous Articles    

Effect of components mass ratio under sieve on cleaning system performance for rape combine harvester

Jia-cheng YUAN1,2(),Chang WANG1,2,Kun HE1,2,Xing-yu WAN1,2,Qing-xi LIAO1,2()   

  1. 1.College of Engineering,Huazhong Agricultural University,Wuhan 430070,China
    2.Key Laboratory of Agricultural Equipment in Mid-Lower Yangtze River,Ministry of Agriculture and Rural Affairs,Wuhan 430070,China
  • Received:2020-07-01 Online:2021-09-01 Published:2021-09-16
  • Contact: Qing-xi LIAO E-mail:2944112901@qq.com;liaoqx@mail.hzau.edu.cn

Abstract:

Existing rape combine harvester, which can complete multiple working procedures at one time and takes the advantage of efficient and time-saving, has the challenges that the cyclone cleaning system is significantly different when the mass ratio of the components under sieve of the rape combine harvester is different. Based on the self-developed 4LYZ-2.0 rape combine harvester, a two factor experiment was carried out, in which the rotation speed of the chopping drum and threshing drum of the combined longitudinal axial flow device of cutting and throwing was taken as the factors. The mass ratio of the components under sieve is regarded as the experimental factor of the quadratic rotation orthogonal combination test, and constructs the regression model between the mass ratio of the pod shell and the short stem, the cleaning rate and the loss rate. Based on the multi-objective optimization, the better change range of the mass ratio of pod shell and short stem was defined. The results of two factor test showed that when the rotation speed of chopping drum was 430~550 r/min, and the rotation speed of threshing drum was 450~650 r/min, the change range of pod shell, short stem, light impurity, and the proportion of rapeseed were 20.86%~31.68%, 9.12%~16.47%, 8.36%~11.27%, 50.05%~51.93%. The multi-objective optimization results showed that when the proportion of pod shell was 20.00%~27.67% and the proportion of short stem was 9.00%~12.08%, the loss rate of cleaning system was lower than 6% and the cleaning rate was higher than 94%. The field test shows that when the threshing clearance is 30mm, the rotation speed of the cutting drum is 550 r/min and the rotation speed of the threshing drum is 450 r/min, the entrainment loss rate of the threshing device is 2.01%, the loss rate of the cyclone cleaning system is 5.39%, and the cleaning rate is 94.62%. 4LYZ-2.0 rape combine harvester can meet the working requirements. By adjusting the operating parameters of the vertical axial flow threshing and separating device, the proportion of the components under sieve can be adjusted to achieve better cleaning performance.

Key words: agricultural mechanization engineering, rape, combine harvester, cyclone separation, components mass ratio under sieve

CLC Number: 

  • S225.99

Fig.1

Overall structure of 4LYZ-2.0 rape combine harvester"

Table 1

Main technical parameters of rape combine harvester"

项目参数或方式
行走方式履带自走式
动力/kW72
作业系统驱动方式液压驱动
长×宽×高/(mm×mm×mm)5400×2300×2800
割幅/mm2000
留茬高度/mm100~350
喂入量/(kg·s-12~3
作业效率/(10000 m2·h-10.43~0.72

Fig.2

Components of under sieve"

Fig.3

Material diversion process of rape combine harvester"

Table 2

Main structural parameters of combined vertical axial flow threshing and separating device"

装置滚筒直径/mm滚筒长度/mm间隙/mm
辅助喂入辊180580
切碎装置4005803
脱粒分离装置440220030

Fig.4

Test bench of combined vertical axial flow threshing and separating device"

Table 3

Factors and levels"

水平因素
切碎滚筒转速A/(r·min-1脱粒滚筒转速B/(r·min-1
1430450
2460500
3490550
4520600
5550650

Fig.5

Influence of rotational speed of threshing drum and chopping drum on components under sieve"

Table 4

Analysis of variance"

筛下物组分质量比来源自由度显著性P
荚壳A40.001**
B40.001**
短茎秆A40.001**
B40.001**
轻杂余A40.001**
B40.001**
籽粒A40.125
B40.052

Fig.6

Cleaning system test bench"

Table 5

Factors and levels of factor texts"

水平荚壳质量比x1/%短茎秆质量比x2/%轻杂余质量比x3/%
12098
223119
3261310
4291511
5321712

Table 6

Orthogonal test results and analysis"

序号x1x2x3清洁率/%损失率/%清洁率隶属度损失率隶属度综合评分
111196.014.390.970.020.33
212294.714.360.740.010.25
313393.394.410.510.030.16
414492.054.370.270.010.08
515590.544.320.000.000.00
621296.184.711.000.110.28
722394.914.770.770.130.19
823493.614.860.540.160.09
924592.224.930.300.18-0.01
1025190.724.780.030.13-0.08
1131395.895.440.950.330.12
1232494.675.630.730.380.01
1333593.415.470.510.33-0.04
1434192.025.480.260.34-0.13
1535290.575.520.010.35-0.22
1641496.116.250.990.56-0.02
1742594.896.280.770.57-0.10
1843193.616.310.540.58-0.19
1944292.236.290.300.57-0.27
2045390.776.410.040.61-0.38
2151595.987.520.960.93-0.27
2252494.767.670.750.97-0.37
2353393.467.580.520.95-0.43
2454292.117.620.280.96-0.53
2555190.637.760.021.00-0.64
k10.3170.146-0.144
k20.155-0.008-0.133
k3-0.087-0.137-0.147
k4-0.318-0.549-0.161
k5-0.748-0.442-0.139
R0.3170.146-0.144
因素主次x1>x2>x3

Table 7

Analysis of variance"

试验指标因素自由度显著性
清洁率x140.001**
x240.001**
x340.791
损失率x140.001**
x240.274
x340.423

Table 8

Factors coding"

水平因素
荚壳质量比x1/%短茎秆质量比x2/%
γ32.009.00
121.7610.17
026.0013.00
-130.2415.83
-γ20.0017.00
Δj4.242.83

Table 9

Experimental results"

试验号荚壳质量比x1/%短茎秆质量比x2/%x1x2x12x22清洁率Yq/%损失率Ys/%
126.0013.00338.00676.00169.0093.245.32
226.0013.00338.00676.00169.0093.575.58
326.0013.00338.00676.00169.0093.435.51
421.6715.83343.04469.59250.5991.524.63
526.0013.00338.00676.00169.0093.495.46
620.0013.00260.00400.00169.0093.344.37
721.6710.17220.38469.59103.4395.554.67
830.2410.17307.54914.46103.4394.436.79
932.0013.00416.001024.00169.0093.457.64
1026.0013.00338.00676.00169.0093.275.37
1126.009.00234.00676.0081.0095.935.43
1226.0013.00338.00676.00169.0093.425.62
1326.0013.00338.00676.00169.0093.605.47
1430.2415.83478.70914.46250.5991.396.75
1526.0017.00442.00676.00289.0090.575.58
1626.0013.00338.00676.00169.0093.285.52

Fig.7

Field experiment"

1 陈旭, 吴崇友, 张敏. 我国油菜联合收割机发展现状及趋势分析[J]. 中国农机化学报, 2018, 39(10): 28-31.
Chen Xu, Wu Chong-you, Zhang Min. Development status and trend analysis of rapeseed combine harvester in China[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(10): 28-31.
2 吴崇友, 肖圣元, 金梅. 油菜联合收获与分段收获效果比较[J]. 农业工程学报, 2014, 30(17): 10-16.
Wu Chong-you, Xiao Sheng-yuan, Jin Mei. Comparation on rape combine harvesting and two-stage harvesting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(17): 10-16.
3 吴崇友, 王积军, 廖庆喜, 等. 油菜生产现状与问题分析[J]. 中国农机化学报, 2017, 38(1): 124-131.
Wu Chong-you, Wang Ji-jun, Liao Qing-xi, et al. Current status and problems of rapeseed production[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(1): 124-131.
4 黄小毛, 宗望远. 油菜联合收获的研究现状及发展趋势[J]. 农业工程, 2012, 2(1): 14-19.
Huang Xiao-mao, Zong Wang-yuan. Research status and development trend of rape combine harvest[J]. Agricultural Engineering, 2012, 2(1): 14-19.
5 吴福良. 多功能油菜联合收获机的现状及发展方向[J]. 农业装备与车辆工程, 2007(4): 3-5.
Wu Fu-liang. The existing state and developing direction of multifunction rape combine-harveste[J]. Agricultural Equipment&Vehicle Engineering, 2007(4): 3-5.
6 李耀明, 邓玲黎, 丁为民, 等. 小型联合收割机清选装置的技术分析[J]. 农机化研究, 2004(3): 55-56.
Li Yao-ming, Deng Ling-li, Ding Wei-min, et al. Analysis and improvement design on the cleaning mechanism of small grain combine[J]. Journal of Agricultural Mechanization Research, 2004(3): 55-56.
7 汤庆, 吴崇友, 王素珍, 等. 谷物清选装置研究现状及发展趋势[J]. 农机化研究, 2013(12): 225-228.
Tang Qing, Wu Chong-you, Wang Su-zhen, et al. Research advances and prospects in cleaning device of grain[J]. Journal of Agricultural Mechanization Research, 2013(12): 225-228.
8 李洋, 徐立章, 周蓥, 等. 脱出物喂入量对多风道清选装置内部气流场的影响[J]. 农业工程学报, 2017, 33(12): 48-55.
Li Yang, Xu Li-zhang, Zhou Ying, et al. Effect of extractions feed-quantity on airflow field in multi-ducts cleaning device[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(12): 48-55.
9 徐立章, 李洋, 李耀明, 等. 谷物联合收获机清选技术与装置研究进展[J]. 农业机械学报, 2019, 50(10): 1-16.
Xu Li-zhang, Li Yang, Li Yao-ming, et al. Research progress on cleaning technology and device of grain combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50 (10): 1-16.
10 程超, 付君, 陈志, 等. 玉米籽粒收获机清选筛堵塞规律及脱附试验[J]. 吉林大学学报: 工学版, 2021, 51(2): 761-771.
Cheng Chao, Fu Jun, Chen Zhi, et al. Sieve blocking laws and stripping test of corn grain harvester[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 761-771.
11 刘大为, 卢伟, 王修善, 等. 联合收割机旋风分离清选装置研究现状及发展趋势[J]. 农业装备与车辆工程, 2016, 54(5): 8-13.
Liu Da-wei, Lu Wei, Wang Xiu-shan, et al. Research status and development trend of cyclone separating cleaning unit of combine harvesters[J]. Agricultural Equipment&Vehicle Engineering, 2016, 54(5): 8-13.
12 刘正怀, 郑一平, 王志明, 等. 微型稻麦联合收获机气流式清选装置研究[J]. 农业机械学报, 2015, 46(7): 102-108.
Liu Zheng-huai, Zheng Yi-ping, Wang Zhi-ming, et al. Design on air-flowing cleaning unit of micro rice-wheat combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 102-108.
13 李杰, 闫楚良, 杨方飞. 联合收割机振动筛的动态仿真与参数优化[J]. 吉林大学学报: 工学版, 2006(5): 701-704.
Li Jie, Yan Chu-liang, Yang Fang-fei. Dynamic simulation and parameter optimization of the combine harvester vibration sieve[J]. Journal of Jilin University(Engineering and Technology Edition), 2006, 36(5): 701-704.
14 曹成茂, 罗坤, 彭美乐, 等. 山核桃物料风选机理与风选性能试验研究[J]. 农业机械学报, 2019, 50(9): 105-112.
Cao Cheng-mao, Luo Kun, Peng Mei-le, et al. Experiment on winnowing mechanism and winnowing performance of hickory material[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(9): 105-112.
15 陈立, 廖庆喜, 宗望远, 等. 油菜联合收获机脱出物空气动力学特性测定[J]. 农业机械学报, 2012, 43(): 125-130.
Chen Li, Liao Qing-xi, Zong Wang-yuan, et al. Aerodynamic characteristics measurement of extraction components for rape combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(Sup.1): 125-130.
16 廖庆喜, 陈立, 李海同, 等. 油菜联合收获机脱出物清选试验台[J]. 农业机械学报, 2013, 44(10): 80-85, 79.
Liao Qing-xi, Chen Li, Li Hai-tong, et al. Cleaning unit test-bed of extraction components for rape combine harvester[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10): 80-85, 79.
17 刘师多, 张利娟, 师清翔, 等. 微型小麦联合收获机旋风分离清选系统研究[J]. 农业机械学报, 2006, 37(6): 45-48.
Liu Shi-duo, Zhang Li-juan, Shi Qing-xiang, et al. Experimental research on cyclone separating cleaning system used on micro-combine harvester of wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(6): 45-48.
18 高连兴, 赵学观, 杨德旭, 等. 大豆脱粒机气力清选循环装置研制与性能试验[J]. 农业工程学报, 2012, 28(24): 22-27.
Gao Lian-xing, Zhao Xue-guan, Yang De-xu, et al. Development and performance test on pneumatic cleaning-circulatory device of soybean thresher[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(24): 22-27.
19 戴飞, 赵武云, 刘国春, 等. 胡麻脱粒物料分离清选机设计与试验[J]. 农业机械学报, 2019, 50(8): 140-147.
Dai Fei, Zhao Wu-yun, Liu Guo-chun, et al. Design and experiment of separating and cleaning machine for flax threshing material[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8): 140-147.
20 倪长安, 张利娟, 刘师多, 等. 无导向片旋风分离清选系统的试验分析[J]. 农业工程学报, 2008,24(8): 135-138.
Ni Chang-an, Zhang Li-juan, Liu Shi-duo, et al. Experimental analysis on cyclone separating cleaning system of no-guide vanes[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(8): 135-138.
21 敬志臣, 韩正晟, 高爱民, 等. 基于Fluent软件的旋风分离清选系统仿真研究[J]. 机械研究与应用, 2014, 27(6): 25-27, 30.
Jing Zhi-chen, Han Zheng-sheng, Gao Ai-min, et al. Simulation study on cyclone separation cleaning system based on Fluent[J]. Mechanical Research & Application, 2014, 27(6): 25-27, 30.
22 廖庆喜, 万星宇, 李海同, 等. 油菜联合收获机旋风分离清选系统设计与试验[J]. 农业工程学报, 2015, 31(14): 24-31.
Liao Qing-xi, Wan Xing-yu, Li Hai-tong, et al. Design and experiment on cyclone separating cleaning system for rape combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(14): 24-31.
23 陈翠英, 王志华, 李青林. 油菜脱出物在气流中的运动分析[J]. 农业机械学报, 2004, 35(5): 90-93.
Chen Cui-ying, Wang Zhi-hua, Li Qing-lin. Analysis of aerodynamic properties of rape extractions[J]. Transactions of the Chinese Society for Agricultural Machinery, 2004, 35(5): 90-93.
24 侯华铭, 崔清亮, 郭玉明. 全喂入谷子联合收获机脱出物含水率对其悬浮特性的影响[J]. 农业工程学报, 2018, 34(24): 29-35.
Hou Hua-ming, Cui Qing-liang, Guo Yu-ming. Effects of moisture contents of threshed materials from whole-feeding combine for foxtail millet on their suspension characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(24): 29-35.
25 Huang A N, Ito K, Fukasawa T, et al. Effects of particle mass loading on the hydrodynamics and separation efficiency of a cyclone separator[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 90: 61-67.
26 程超, 付君, 郝付平, 等. 清选筛运动参数对玉米芯轴堵筛规律的影响[J]. 吉林大学学报: 工学版, 2020, 50(1): 351-360.
Cheng Chao, Fu Jun, Hao Fu-ping, et al. Effect of motion parameters of cleaning screen on corn cob blocking law[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 351-360.
27 廖庆喜, 徐阳, 袁佳诚, 等. 油菜联合收获机切抛组合式纵轴流脱离装置设计与试验[J]. 农业机械学报, 2019, 50(7): 140-150.
Liao Qing-xi, Xu Yang, Yuan Jia-cheng, et al. Design and experiment of combined cutting and throwing vertical axial flow detachment device for rape combine harvester[J]. Transactions of the Chinese Society for Agricultura Machinery, 2019, 50(7): 140-150.
28 万星宇, 舒彩霞, 徐阳, 等. 油菜联合收获机分离清选差速圆筒筛设计与试验[J]. 农业工程学报, 2018, 34(14): 27-35.
Wan Xing-yu, Shu Cai-xia, Xu Yang, et al. Design and experiment on cylinder sieve with different rotational speed in cleaning system for rape combine harvesters[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14): 27-35.
[1] Rong-qing LIANG,Bo ZHONG,He-wei MENG,Zhi-min SUN,Za KAN. Design of 4QJ⁃3 type pickup header of silage oat [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1887-1896.
[2] Jun FU,Yi-chen ZHANG,Chao CHENG,Zhi CHEN,Xin-long TANG,Lu-quan REN. Design and experiment of bow tooth of rigid flexible coupling for wheat threshing [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 730-738.
[3] Zhao XUE,Jun FU,Zhi CHEN,Feng-de WANG,Shao-ping HAN,Lu-quan REN. Optimization experiment on parameters of chopping device of forage maize harvester [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 739-748.
[4] Chao CHENG,Jun FU,Fu-ping HAO,Zhi CHEN,De-yi ZHOU,Lu-quan REN. Effect of motion parameters of cleaning screen on corn cob blocking law [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 351-360.
[5] Chao CHENG,Jun FU,Xin⁃long TANG,Zhi CHEN,Lu⁃quan REN. Effects of vibration mode on interface adhesion law of rice threshed mixtures [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1228-1235.
[6] FU Jun,QIAN Zhi-hui,YIN Wei,WANG Jia-jia,REN Lu-quan. Experimental study of friction and tensile properties of wheat [J]. 吉林大学学报(工学版), 2015, 45(2): 501-507.
[7] QIN Zheng-kun,HE Fei,LIU Chun-ling,MA Chun-sheng. Effect of reactive ion etching process on simulation of polymeric arrayed waveguide grating multiplexers [J]. 吉林大学学报(工学版), 2011, 41(03): 791-794.
[8] Zhao Ji-yin;Zheng Rui-rui;Liu Yu . Power transformer fault diagnosis based on trapezium gray clustering analysis [J]. 吉林大学学报(工学版), 2008, 38(03): 726-0730.
[9] Li Jie,Yan Chu-liang,Yang Fang-fei . Dynamic simulation and parameter optimization of the
combine harvester vibration sieve
[J]. 吉林大学学报(工学版), 2006, 36(05): 701-0704.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!