Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (6): 2174-2181.doi: 10.13229/j.cnki.jdxbgxb20200749

Previous Articles    

Image classification of insect pests based on saliency detection

Hong-wei ZHAO1(),Dong-sheng HUO1,Jie WANG2,Xiao-ning LI3()   

  1. 1.College of Computer Science and Technology,Jilin University,Changchun 130012,China
    2.Shanghai Academy of Spaceflight Technology,Shanghai 201109,China
    3.College of Computer Science and Technology,Changchun Normal University,Changchun 130032,China
  • Received:2020-09-26 Online:2021-11-01 Published:2021-11-15
  • Contact: Xiao-ning LI E-mail:zhaohw@jlu.edu.cn;lixiaoning@ccsfu.edu.cn

Abstract:

Due to the diverse species of pests and the large differences between classes, it is difficult to achieve accurate classification. Based on the two processes of target positioning and target recognition when the human visual system recognizes objects, a pest classification model PestNet is designed. The model is mainly composed of Object Positioning Module (OPM) and Multi-Feature Fusion Module (MFFM). OPM integrates the shallow detail information and deep spatial information of the image through a U-shaped network structure, preliminarily delineating significant areas, and outputting spatial semantic features. MFFM performs bilinear pooling operations on spatial semantic features and abstracts semantic features to weaken background information and increase detailed features. In addition, training is assisted by target area clipping and masking to improve model classification accuracy. We conducted experiments on the disease and insect pest data set IP102, and the model classification accuracy rate reached 77.40%, which can realize the classification and recognition of large-scale pest images under complex background.

Key words: computer application, insect pest classification, significance detection, multi-feature fusion, data enhancement

CLC Number: 

  • TP391

Fig.1

PestNet model architecture"

Fig.2

OPM module architecture"

Fig.3

Multi-mode bilinear pooling"

Fig.4

Intra-class differences between pest data sets"

Fig.5

Histogram of IP102 data set distribution"

Fig.6

Heat map of the model"

Table1

Basic model classification results"

基础模型图像尺寸准确率/%
VGG-16[Mask]224×25667.90
Inception-V3[Mask]299×33170.88
ResNet-50[Mask]224×25671.57
ResNet-50[Mask]448×51273.27
ResNet-50[OPM]448×51274.34

Table2

Controlled experiment of PestNet model"

OPMMFFM裁剪掩膜准确率/%
73.33
74.34
75.61
76.74
76.03
77.40
1 Serre T, Wolf L, Bileschi S, et al. Robust object recognition with cortex-like mechanisms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 411-426.
2 Cheng X, Zhang Y H, Chen Y Q, et al. Pest identification via deep residual learning in complex background[J]. Computers and Electronics in Agriculture, 2017, 141: 351-356.
3 车颖, 冯皛, 郑宏亮. 基于卷积神经网络的超声造影图像去噪方法[J]. 吉林大学学报:理学版, 2021, 59(5): 1256-1259.
Che Ying, Feng Xiao, Zheng Hong-liang. Denoisng method of contrast-enhanced ultrasound image based on convolutional neural networks[J]. Journal of Jilin University Science Edition, 2021, 59(5): 1256-1259.
4 李伟伟. 非局部的可切换滤波图像椒盐噪声去除方法[J]. 吉林大学学报:理学版, 2019, 57(4): 910-916.
Li Wei-wei. Method for removing salt and pepper noise from non local switchable filter image[J]. Journal of Jilin University Science Edition, 2019, 57(4): 910-916.
5 Goodale M A, Milner A D. Separate visual pathways for perception and action[J]. Trends in Neurosciences, 1992, 15(1): 20-25.
6 郑雅羽, 田翔, 陈耀武. 基于时空特征融合的视觉注意模型[J]. 吉林大学学报: 工学版, 2009, 39(6): 1625-1630.
Zheng Ya-yu, Tian Xiang, Chen Yao-wu. Visual attention model based on fussion of spatiotemporal features[J]. Journal of Jilin University(Engineering and Technology Edition), 2009, 39(6): 1625-1630.
7 李鹏松, 李俊达, 吴良武, 等. 基于阈值分割法和卷积神经网络的图像识别算法[J]. 吉林大学学报:理学版, 2020, 58(6): 1436-1442.
Li Peng-song, Li Jun-da, Wu Liang-wu, et al. Image recognition algorithm based on threshold segmentation method and convolutional neural network[J]. Journal of Jilin University Science Edition, 2020, 58(6): 1436-1442.
8 傅博, 王瑞子, 王丽妍, 等. 基于深度卷积神经网络的水下偏色图像增强方法[J]. 吉林大学学报:理学版, 2021, 59(4): 891-899.
Fu Bo, Wang Rui-zi, Wang Li-yan, et al. Enhancement method of underwater color cast image based on deep convolutional neural network[J]. Journal of Jilin University Science Edition, 2021, 59(4): 891-899.
9 高云龙, 吴川, 朱明. 基于改进卷积神经网络的短文本分类模型[J]. 吉林大学学报:理学版, 2020, 58(4): 923-930.
Gao Yun-long, Wu Chuan, Zhu Ming. Short text classification model based on improved convolutional neural network[J]. Journal of Jilin University Science Edition, 2020, 58(4): 923-930.
10 Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention, University of Freiburg, Germany, 2015: 234-241.
11 Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[C]∥Proceedings of the 27th International Conference on Neural Information Processing Systems, Cambridge, MA, USA, 2014: 2672-2680.
12 Pinheiro P O, Collobert R. From image-level to pixel-level labeling with convolutional networks[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 2015: 1713-1721.
13 Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
14 范敏, 韩琪, 王芬, 等. 基于多层次特征表示的场景图像分类算法[J]. 吉林大学学报: 工学版, 2017, 47(6): 1909-1917.
Fan Min, Han Qi, Wang Fen, et al. Scene image categorization algorithm based on multi-level features representation[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(6): 1909-1917.
15 Wei X S, Wu J, Cui Q. Deep learning for fine-grained image analysis: a survey[J/OL]. [2020-09-18].
16 Wu X P, Zhan C, Lai Y K, et al. IP102: A large-scale benchmark dataset for insect pest recognition[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019: 8779-8788.
17 Selvaraju R R, Cogswell M, Das A, et al. Grad-cam: Visual explanations from deep networks via gradient-based localization[C]∥2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 618-626.
18 Hu T, Qi H, Huang Q, et al. See better before looking closer: Weakly supervised data augmentation network for fine-grained visual classification[J/OL]. [2020-09-20].
19 Liu C, Zoph B, Neumann M, et al. Progressive neural architecture search[C]∥Proceedings of the European Conference on Computer Vision, Munich, Germany, 2018: 1-16.
20 吴建,许镜,丁韬.基于集成迁移学习的细粒度图像分类算法[J].重庆邮电大学学报:自然科学版,2020,32(3):452-458.
Wu Jian, Xu Jing, Ding Tao. Fine-grained image classification algorithm based on ensemble methods of transfer learning[J]. JJournal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2020, 32(3): 452-458.
21 李伟, 黄鹤鸣, 武风英, 等. 基于深度多特征融合的自适应CNN图像分类算法[J]. 计算机工程, 2021, 47(9): 235-239, 251.
Li Wei, Huang He-ming, Wu Feng-ying, et al. Adaptive CNN-based image classification algorithm based on deep fusion of multi-feature[J]. Computer Engineering, 2021, 47(9): 235-239, 251.
22 生龙, 马建飞, 杨瑞欣, 等. 基于特征交换的CNN图像分类算法研究[J]. 计算机工程, 2020, 46(9): 268-273.
Sheng Long, Ma Jian-fei, Yang Rui-xin, et al. Research on CNN image classification algorithm based on feature exchange[J]. Computer Engineering, 2020, 46(9): 268-273.
[1] Sheng-sheng WANG,Jing-yu CHEN,Yi-nan LU. COVID⁃19 chest CT image segmentation based on federated learning and blockchain [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2164-2173.
[2] Jun-cong LIN,Jun LEI,Meng CHEN,Shi-hui GUO,Xing GAO,Ming-hong LIAO. Real⁃time camera planning for dynamic multiple targets considering cinematographic visual properties [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2154-2163.
[3] Yin-di YAO,Jun-jin HE,Yang-li LI,Dang-yuan XIE,Ying LI. ET0 simulation of self⁃constructed improved whale optimized BP neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1798-1807.
[4] Hong-wei ZHAO,Zi-jian ZHANG,Jiao LI,Yuan ZHANG,Huang-shui HU,Xue-bai ZANG. Bi⁃direction segmented anti⁃collision algorithm based on query tree [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1830-1837.
[5] Jie CAO,Xue QU,Xiao-xu LI. Few⁃shot image classification method based on sliding feature vectors [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1785-1791.
[6] Xiao-xue SUN,Hui ZHONG,Hai-peng CHEN. Statistical analysis system for students' examination results based on decision tree classification technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1866-1872.
[7] Meng-su ZHANG,Chun-tian LIU,Xi-jin LI,Yong-ping HUANG. Design of fuzzy comprehensive evaluation system for performance appraisal based on K⁃means clustering algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1851-1856.
[8] Chun-bo WANG,Xiao-qiang DI. Cloud storage integrity verification audit scheme based on label classification [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1364-1369.
[9] Dan-tong OUYANG,Yang LIU,Jie LIU. Fault diagnosis method based on test set under fault response guidance [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1017-1025.
[10] Rong QIAN,Ru ZHANG,Ke-jun ZHANG,Xin JIN,Shi-liang GE,Sheng JIANG. Capsule graph neural network based on global and local features fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1048-1054.
[11] Xiao-long ZHU,Zhong XIE. Geospatial data extraction algorithm based on machine learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1011-1016.
[12] Bao-feng SUN,Xin-xin REN,Zai-si ZHENG,Guo-yi Li. Multi⁃objective flow shop optimal scheduling considering worker's load [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 900-909.
[13] Yuan-ning LIU,Di WU,Xiao-dong ZHU,Qi-xian ZHANG,Shuang-shuang LI,Shu-jun GUO,Chao WANG. User interface components detection algorithm based on improved YOLOv3 [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1026-1033.
[14] Guang-qiu CHEN,Yu-cun CHEN,Jia-yue LI,Guang-wen LIU. Infrared and visible image fusion based on discrete nonseparable shearlet transform and convolutional sparse representation [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 996-1010.
[15] Shu-min WANG,Wei CHEN. Algorithm for identifying abnormal behavior in underground mines based on continuous density hidden Markov model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1067-1072.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!