Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (2): 483-490.doi: 10.13229/j.cnki.jdxbgxb20211087
Ren-yan JIANG1,2(),Bin-bin XIONG2
CLC Number:
1 | 许彬彬, 杨兆军, 陈菲, 等. 非齐次泊松过程的数控机床可靠性建模[J]. 吉林大学学报: 工学版, 2011, 41(2): 210-214. |
Xu Bin-bin, Yang Zhao-jun, Chen Fei, et al. Reliability model of CNC machine tools based on non-homogenous poisson process[J]. Journal of Jilin University(Engineering and Technology Edition), 2011, 41(2):210-214. | |
2 | 申桂香, 戚晓艳, 张英芝, 等. 基于等效样本法的系统组件运行可靠性建模[J]. 吉林大学学报: 工学版, 2020, 50(3):914-919. |
Shen Gui-xiang,Qi Xiao-yan,Zhang Ying-zhi, et al. Operational reliability modeling of system components based on equivalent sample method[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(3): 914-919. | |
3 | Lad B K, Kulkarni M S. A parameter estimation method for machine tool reliability analysis using expert judgement[J]. International Journal of Data Analysis Techniques and Strategies, 2010, 2(2): 155-169. |
4 | Hu W, Yang Z, Chen C, et al. Reliability assessment of machine tools considerin[C]∥IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2021: 032036. |
5 | Mikolajczyk T, Nowicki K, Bustillo A, et al. Predicting tool life in turning operations using neural networks and image processing[J]. Mechanical Systems and Signal Processing, 2018, 104: 503-513. |
6 | Lin Y, He S, Lai D, et al. Wear mechanism and tool life prediction of high-strength vermicular graphite cast iron tools for high-efficiency cutting[J]. Wear, 2020, 454: 203319. |
7 | 王新刚, 张鑫垚, 杨禄杰, 等. 竞争失效条件下针对磨损退化数据的刀具可靠性分析[J]. 中国机械工程, 2020, 31(14): 1672-1677+1746. |
Wang Xin-gang, Zhang Xin-yao,Yang Lu-jie, et al. Tool reliability analysis for wear degradation data under competitive failure conditons[J]. China Mechanical Engineering, 2020, 31(14): 1672-1677+1746. | |
8 | Ezugwu E O, Arthur S J, Hines E L. Tool-wear prediction using artificial neural networks[J]. Journal of Materials Processing Technology, 1995, 49(3): 255-264. |
9 | 雷小宝, 廖文和, 谢峰, 等. 义齿用预烧结氧化锆高速铣削时刀具磨损及寿命预测[J]. 南京理工大学学报, 2013, 37(4): 567-572, 578. |
Lei Xiao-bao, Liao Wen-he, Xie Feng, et al. Predict on cutter wear and life in high-speed milling of pre-sintered zirconia used for denture[J]. Journal of Nanjing University of Science and Technology, 2013, 37(4): 567-572, 578. | |
10 | Stephenson D A, Agapiou J S. Metal Cutting Theory and Practice[M].3rd ed. Boca Raton: CRC Press, 2016. |
11 | Alajmi M S, Almeshal A M. Estimation and optimization of tool wear in conventional turning of 709m40 alloy steel using support vector machine(SVM) with bayesian optimization[J]. Materials, 2021, 14(16): 3773. |
12 | Quiza R, Figueira L, Davim J P. Comparing statistical models and artificial neural networks on predicting the tool wear in hard machining D2 AISI steel[J]. International Journal of Advanced Manufacturing Technology, 2008, 37(7/8): 641-648. |
13 | Ramamoorthy K. Tool wear evaluation by stereo vision and prediction by artificial neural network[J]. Journal of Materials Processing Technology, 2001, 112(1): 43-52. |
14 | Xu L, Huang C, Li C, et al. Prediction of tool wear width size and optimization of cutting parameters in milling process using novel ANFIS-PSO method[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2020(3): 1-12. |
15 | Çelik Y H, Kilickap E, Güney M. Investigation of cutting parameters affecting on tool wear and surface roughness in dry turning of Ti-6Al-4V using CVD and PVD coated tools[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(6): 2085-2093. |
16 | 杨兆军, 陈传海, 陈菲, 等. 数控机床可靠性技术的研究进展[J]. 机械工程学报, 2013, 49(21): 130-139. |
Yang Zhao-jun, Chen Chuan-hai, Chen Fei, et al. Progress in the research of reliability technology of machine tools[J]. Journal of Mechanical Engineering, 2013, 49(21): 130-139. | |
17 | Wu P, Wu J, Deng C. SVR-based degradation analysis and reliability assessment for CNC machine tools [C]∥Kota Kinabalu: Applied Computing,Computer Science, and Computer Engineering, Wuhan, 2011: 586-591. |
18 | Sun B, Xu B, He J, et al. Application of inverse gaussian model in mechanical product degradation model [C]∥2nd International Conference on System Reliability and Safety, Milan, 2017: 238-242. |
19 | Li S, Ran Y, Zhang G, et al. Accuracy degradation model and residual accuracy life prediction of CNC machine tools based on wiener process [C]∥2nd International Conference on Robotics and Mechantronics, Shaanxi, 2021: 032039. |
20 | 杨志伟, 任工昌, 孟勃敏. 基于性能退化数据的加工中心的可靠性评估[J]. 陕西科技大学学报: 自然科学版, 2011, 29(6): 43-46. |
Yang Zhi-wei, Ren Gong-chang, Meng Bo-min. Reliability evaluation on machining center based on performance degradation data[J]. Journal of Shaanxi University of Science and Technology(Natural Science Edition), 2011, 29(6): 43-46. | |
21 | 邓超, 钱有胜, 吴军, 等. BP网络在进给系统定位误差预测中的运用[J]. 振动、测试与诊断, 2017, 37(3): 449-455. |
Deng Chao, Qian You-sheng, Wu Jun, et al. A forecasting method of positioning acurracy for CNC machine tools feed system based on BP neural network[J]. Journal of Vibration, Measurement and Diagnosis, 2017, 37(3): 449-455. | |
22 | Duan C, Deng C, Li N. Reliability assessment for CNC equipment based on degradation data[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(1-4): 421-434. |
23 | Peng W, Li Y F, Yang Y J, et al. Bivariate analysis of incomplete degradation observations based on inverse gaussian processes and copulas[J]. IEEE Transactions on Reliability, 2016, 65(2): 624-639. |
24 | 王刚, 陈捷, 洪荣晶, 等. 基于HMM和优化的PF的数控转台精度衰退模型[J]. 振动与冲击, 2018, 37(6): 7-13. |
Wang Gang, Chen Jie, Hong Rong-jing, et al. Model for the positional accuracy degradation of NC rotary tables based on the hidden Markov model and optimized particle fitering[J]. Journal of Vibration and Shock, 2018, 37(6): 7-13. | |
25 | 张云, 姜楠, 王立平. 基于Wiener过程的数控转台极小子样可靠性分析[J]. 清华大学学报: 自然科学版, 2019, 59(2): 91-95. |
Zhang Yun, Jiang Nan, Wang Li-ping. Relibility analysis of NC rotary table based on a wiener process for extremely small samples[J]. Journal of Tsinghua University(Science and Technology), 2019, 59(2): 91-95. | |
26 | Guo J, Zheng H, Li B, et al. A bayesian approach for degradation analysis with individual differences [J]. IEEE Access, 2019, 7: 175033-175040. |
27 | Li Z, Wang Y, Wang K. A data-driven method based on deep belief networks for backlash error prediction in machining centers[J]. Journal of Intelligent Manufacturing, 2017(4): 1-13. |
28 | Wen J, Gao H, Liu Q, et al. A new method for identifying the ball screw degradation level based on the multiple classifier system[J]. Measurement, 2018, 130: 118-127. |
29 | Jiang R. A general proportional model and modelling procedure[J]. Quality and Reliability Engineering International, 2012, 28(6): 634-647. |
30 | Jiang R. Introduction to Quality and Reliability Engineering[M]. Beijing:Science Press and Springer, 2015. |
31 | Guida M, Pulcini G. The inverse Gamma process: a family of continuous stochastic models for describing state-dependent deterioration phenomena[J]. Reliability Engineering and System Safety, 2013, 120: 72-79. |
32 | Jiang R. An extended log-linear model for modeling wear processes[C]∥9th IMA International Conference on Modelling in Industrial Maintenance and Reliability, London, 2016: 84-89. |
33 | Jiang R, Jardine A. Health state evaluation of an item: a general framework and graphical representation[J]. Reliability Engineering and System Safety, 2008, 93(1): 89-99. |
34 | Jiang R. A new NHPP model for modeling failure process with S-shaped mean cumulative function[C]∥the Proceedings of 2016 11th International Conference on Reliability Maintainability and Safety, Hangzhou, 2016: 17209315. |
35 | Akaike H T. A new look at the statistical model identification[J]. Automatic Control IEEE Transactions on, 1974, 19(6): 716-723. |
36 | Jiang R. A trade off BX life and its applications[J]. Reliability Engineering and System Safety, 2013, 113: 1-6. |
[1] | Fei-yue DENG, LYUHao-yang,Xiao-hui GU,Ru-jiang HAO. Fault diagnosis of high⁃speed train axle bearing based on a lightweight neural network Shuffle⁃SENet [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 474-482. |
[2] | Hong-xun ZHAO,Zhao-jun YANG,Chuan-hai CHEN,Hai-long TIAN,Li-ping WANG. Optimal design of acceleration test of motorized spindle of numerical control Machine Tool considering parameter weight [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 409-416. |
[3] | Li-juan YU,Ang LIU,Zhao-jun YANG,Hai-long TIAN,Chuan-hai CHEN,Jing-wen GAO. Reliability analysis of numerical control machine tools based on analytic network process and date enevalopment analys [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 400-408. |
[4] | Shao-jiang DONG,Peng ZHU,Xue-wu PEI,Yang LI,Xiao-lin HU. Fault diagnosis of rolling bearing under variable operating conditions based on subdomain adaptation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 288-295. |
[5] | Guo-fa LI,Yan-bo WANG,Jia-long HE,Ji-li WANG. Research progress and development trend of health assessment of electromechanical equipment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 267-279. |
[6] | Gen-bao ZHANG,Hao LI,Yan RAN,Qiu-jin LI. A transfer learning model for bearing fault diagnosis [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1617-1626. |
[7] | WANG Qian, ZHAO Ding-xuan, ZHAO Ying, CHEN Na. Dynamic analysis of carrier helicopter on complex deck [J]. 吉林大学学报(工学版), 2017, 47(4): 1109-1113. |
[8] | ZHANG Biao,ZHAO Ke-ding,LI Ge-qiang . Nonlinear control of friction in passive force servo system [J]. 吉林大学学报(工学版), 2008, 38(06): 1348-1353. |
|