Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (3): 578-584.doi: 10.13229/j.cnki.jdxbgxb20200831

Previous Articles    

Choice preference analysis and modeling of ridesplitting service

Xing-hua LI1,2(),Fei-yu FENG1,2,Cheng CHENG1,2(),Wei WANG1,2,Peng-cheng TANG3   

  1. 1.The Key Laboratory of Road and Traffic Engineering,Ministry of Education,Tongji University,Shanghai 201804,China
    2.China Transportation Institute at Tongji,Shanghai 200092,China
    3.China Roads Communications Science & Technology Group Co. ,Ltd. ,Shijiazhuang 050035,China
  • Received:2020-11-02 Online:2022-03-01 Published:2022-03-08
  • Contact: Cheng CHENG E-mail:xinghuali@tongji.edu.cn;18608@tongji.edu.cn

Abstract:

To analyze the users' preference for ridesplitting and the characteristics of changes in the size of ridesplitting under different pricing environments, this paper adopts the Revealed Preference and Stated Preference (RP+SP) questionnaire method to investigate the behavior preferences of Shanghai residents in different environments, such as changing discount rates of ridesplitting service, the growth rate of ride-sourcing fees and the cost of parking. The nested logit model is used to calibrate the influence of socio-economic attributes and pricing factors on user choice behavior. Research shows that females with a monthly income of CNY 5000 to 9999 and the age between 26 and 40 are more inclined to choose ridesplitting. Through numerical analysis, this paper simulates the trend of ridesplitting market size under the changes in ridesplitting discount, ridesourcing fees and parking charge. The analysis shows that the size of the ridesplitting market increase by 1.03%, 0.48%, and 0.16% respectively under the unit change in ridesplitting discount, increased ridesourcing service fees and changes in parking fees. The results show that respondents are more sensitive to ridesplitting discounts.

Key words: engineering of communication and transportation system, ridesplitting, choice preference, nested Logit model

CLC Number: 

  • U121

Table 1

Uniform design"

出行距离/km出行目的出行时段网约车定价拼车折扣/%停车收费/元
5通勤晚高峰正常收费0.7520
10通勤早高峰涨价收费0.7530
10通勤晚高峰折扣收费0.5510
20通勤早高峰正常收费0.5520
5休闲平峰涨价收费0.5510
5休闲晚高峰正常收费0.6530
20休闲早高峰正常收费0.6510
20休闲平峰折扣收费0.7520
5商务早高峰折扣收费0.6520
10商务平峰涨价收费0.7510
10商务平峰折扣收费0.5530
20商务晚高峰涨价收费0.6530

Table 2

Information of social demographic"

变量描述样本量比例/%
性别50560.3
33339.7
年龄18~25岁17020.3
26~35岁39647.3
35~40岁9711.5
40岁以上17520.9
学历水平高中及以下789.2
大专(生)13416.1
本科(生)53664
研究生及以上9010.7
月收入5000元以下17621
5000~9999元36143.1
10 000~12 499元13516.2
12 500元及以上16619.7
车辆保有量24228.8
1辆51361.2
2辆及以上小汽车8310
网约车使用频率很少使用(每月0~1次)25530.4
偶尔使用(每月2~3次)29635.4
较常使用(至少每周1次)28734.2

Fig.1

Choice of travel mode"

Table 3

Variable definition for modeling"

变量类型变量名称变量定义
行程费用Fare给定情景下,交通方式的费用
行程时间Time给定情景下,交通方式的时间
出行距离D1(参照)5 km=1;否则=0
D210 km=1;否则=0
D320 km=1;否则=0
出行目的P1(参照)通勤=1;否则=0
P2休闲=1;否则=0
P3商务=1;否则=0
出行时段S1(参照)平峰=1;否则=0
S2早高峰=1;否则=0
S3晚高峰=1;否则=0
性别G(参照)男=1;女=0
年龄A118~25岁=1;否则=0
A226~35岁=1;否则=0
A336~40岁=1;否则=0
A4(参照)40岁以上=1;否则=0
月收入I15000元以下=1;否则=0
I25000~9999元=1;否则=0
I310 000~12 499元=1;否则=0
I4(参照)12 500元以上=1;否则=0
车辆保有量C1(参照)无车=1;否则=0
C21辆车=1;否则=0
C32辆车=1;否则=0
网约车使用频率F1(参照)很少使用=1;否则=0
F2偶尔使用=1;否则=0
F3较常使用=1;否则=0

Table 4

Parameter calibration for branch"

建模变量公交车地铁小汽车
出行距离/km5(参照)
10-0.3980.369**0.631***
200.7671.236**1.903***
出行时段通勤(参照)
休闲娱乐-0.188-0.138-0.234**
商务出差-1.304***-0.853***-3.389***
出行目的平峰(参照)
早高峰-0.399**-0.829***-0.084
晚高峰-1.098***-0.522***-0.027

Table 5

Parameter calibration for alternatives"

建模变量交通方式
公交车地铁小汽车出租车网约拼车
行程费用-0.056***-0.056***-0.056***-0.056***-0.056***
行程时间-0.036**-0.036**-0.036**-0.036**-0.036**
性别0.1150.0660.099-0.291***-0.123*
年龄18~25岁-0.1440.0330.0940.255*0.239*
26~35岁-0.133-0.138**0.183*0.0410.310***
36~40岁0.065-0.304***0.0450.0950.400***
40岁以上(参照)
月收入5000元以内1.408***0.077-0.143-0.304**0.210
5000~9999元0.506***0.048-0.317***0.1560.611***
10 000~12 499元0.229-0.015-0.292***-0.2110.222**
12 500元以(参照)
车辆保有量无车(参照)
1辆车-0.236-0.330***0.663***-0.031-0.146*
2辆车-0.296***-0.653***0.938***-0.043-0.450***
网约车使用频率很少使用(参照)
偶尔使用-1.130***-0.880***-0.555***-0.994***-0.127
较常使用-2.077***-1.604***-1.125***-1.186***-0.18
截距1.382**2.515***0.759***0.572***-0.512***

Fig.2

Shifting rate of the change in level of ridesplitting discount"

Fig.3

Shifting rate of the change in level of ridesourcing fee"

Fig.4

Shifting rate of the change in level of parking fee"

1 Li W X, Pu Z Y, Li Y, et al. Characterization of ridesplitting based on observed data: a case study of Chengdu, China[J]. Transportation Research Part C: Emerging Technologies, 2019, 100:330-353.
2 Shaheen S, Cohen A. Shared ride services in North America: definitions, impacts, and the future of pooling[J]. Transport Reviews, 2019, 39(4):427-442.
3 Chen X Q, Zahiri M, Zhang S C. Understanding ridesplitting behavior of on-demand ride services: An ensemble learning approach[J]. Transportation Research Part C: Emerging Technologies, 2017,76:51-70.
4 国家发展改革委. 关于促进绿色消费的指导意见[DB/OL].[2016-03-02].
5 Mohamed M J, Rye T, Fonzone A. Operational and policy implications of ridesourcing services: a case of uber in London, UK[J]. Case Studies on Transport Policy, 2019, 7(4):823-836.
6 Brown A E. Who and where rideshares? rideshare travel and use in los angeles[J]. Transportation Research Part A: Policy and Practice, 2020, 136(6):120-134.
7 Moody J, Middleton S, Zhao J H. Rider-to-rider discriminatory attitudes and ridesharing behavior[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 62:258-273.
8 de Souza Silva L A, de Andrade M O, Maia M L. How does the ride-hailing systems demand affect individual transport regulation?[J]. Research in Transportation Economics, 2018, 69: 600-606.
9 Dias F F, Lavieri P S, Garikapati V M, et al. A behavioral choice model of the use of car-sharing and ride-sourcing services[J]. Transportation, 2017, 44, 1307-1323.
10 方开泰. 均匀设计与均匀设计表[M]. 上海:科学出版社, 1994.
11 周伟, 赵胜川. 基于Mixed Logit模型的路线选择行为量化分析[J]. 吉林大学学报:工学版,2013,43(2):304-309.
Zhou Wei, Zhao Sheng-Chuan. Quantitative analysis of traveler route choice behavior based on Mixed Logit model[J]. Journal of Jinlin University (Engineering and Technology Edition), 2013, 43(2):304-309.
12 马莹莹,陆思园,张晓明, 等. 考虑个体风险偏好差异的高速公路出行选择模型[J]. 吉林大学学报:工学版,2021,51(5):1673-1683.
Ma Ying-ying, Lu Si-yuan, Zhang Xiao-ming, et al. Model of highway travel selection considering individual risk preference difference[J]. Journal of Jinlin University (Engineering and Technology Edition), 2021,51(5):1673-1683.
13 张戎, 李璐, 简文良. 城市货运车辆选择行为模型及应用[J]. 交通运输系统工程与信息, 2018, 18(4):135-141.
Zhang Rong, Li Lu, Jian Wen-Liang. Urban freight vehicle type choice model and application[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(4):135-141.
[1] Tian-jun FENG,Xue-lu SUN,Jia-sheng HUANG,Xiu-juan TIAN,Xian-min SONG. Two-phase signal intersection delay based on three crossing modes [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 550-556.
[2] Xian-tong LI,Wei QUAN,Hua WANG,Peng-cheng SUN,Peng-jin AN,Yong-xing MAN. Route travel time prediction on deep learning model through spatiotemporal features [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 557-563.
[3] Hong-fei JIA,Zi-han SHAO,Li-li YANG. Ride⁃sharing matching model and algorithm of online car⁃hailing under condition of uncertain destination [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 564-571.
[4] Yan-feng JIA,Da-yi QU,Lu LIN,Rong-han YAO,Xiao-long MA. Coordinated speed control of connected mixed traffic flow based on trajectory [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2051-2060.
[5] Ying-ying MA,Si-yuan LU,Xiao-ming ZHANG,Wen-shu WEI. Model of highway travel selection considering individual risk preference difference [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1673-1683.
[6] Chang-fu ZONG,Long WEN,Lei HE. Object detection based on Euclidean clustering algorithm with 3D laser scanner [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 107-113.
[7] Liang JIANG,Yi HE. Risky driving behavior and influencing factors analysis for electric two⁃wheeler [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1107-1113.
[8] Xiao⁃qin LUO,Dian⁃hai WANG,Sheng JIN. Traffic signal actuated control at isolated intersections for heterogeneous traffic [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 695-704.
[9] Zhi⁃hui LI,Tao ZHONG,Yong⁃hua ZHAO,Yong⁃li HU,Hai⁃tao LI,Jing⁃wei ZHAO. Pedestrian tracking algorithm for autonomous driving [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 680-687.
[10] QU Da-yi,YANG Jing-ru,BING Qi-chun,WANG Wu-lin,ZHOU Jing-chun. Arterial traffic offset optimization based on queue characteristics at adjacent intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1685-1693.
[11] LI Zhi-hui, HU Yong-li, ZHAO Yong-hua, MA Jia-lei, LI Hai-tao, ZHONG Tao, YANG Shao-hui. Locating moving pedestrian from running vehicle [J]. 吉林大学学报(工学版), 2018, 48(3): 694-703.
[12] SUN Zong-yuan, FANG Shou-en. Hierarchical clustering algorithm of moving vehicle trajectories in entrances and exits freeway [J]. 吉林大学学报(工学版), 2017, 47(6): 1696-1702.
[13] ZHANG Zhe, JIA Li-min, QIN Yong, YUN Ting. Equalization-based feedback control model of pedestrian counter flow [J]. 吉林大学学报(工学版), 2017, 47(6): 1728-1737.
[14] SHAO Sai, BI Jun, GUAN Wei. Electric vehicle routing problem with charging and dynamic customer demands [J]. 吉林大学学报(工学版), 2017, 47(6): 1688-1695.
[15] LI Ye, WANG Wei, XING Lu, WANG Hao, DONG Chang-yin. Improving traffic efficiency of highway by integration of adaptive cruise control and variable speed limit control [J]. 吉林大学学报(工学版), 2017, 47(5): 1420-1425.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!