Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (5): 1673-1683.doi: 10.13229/j.cnki.jdxbgxb20200409

Previous Articles    

Model of highway travel selection considering individual risk preference difference

Ying-ying MA1,2(),Si-yuan LU2(),Xiao-ming ZHANG2,Wen-shu WEI2   

  1. 1.School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510640,China
    2.Transportation Planning and Design Studio,Guangzhou Urban Planning & Design Survey Research Institute,Guangzhou 510060,China
  • Received:2020-06-11 Online:2021-09-01 Published:2021-09-16
  • Contact: Si-yuan LU E-mail:mayingying@scut.edu.cn;1055054928@qq.com

Abstract:

This paper aims to analyze the travel characteristics of highway on holidays and establish the travel behavior decision-making model. First of all, a total of 500 valid questionnaires were collected from the survey and analysis of highway travel behavior characteristics on holidays. Secondly, considering the difference of individual risk preference, a freeway travel time selection model based on nested logit -cumulative prospect theory model is proposed to further understand highway travel behavior decision-making in holidays. Finally, a case study is carried out on the holiday Expressway in Guangdong Province, and the accuracy of the model is tested. The results show that the overall prediction error of the proposed model is 14.14%, and prediction error of the nested logit model is about 22.22%. Compared with other models, the proposed model can improve the accuracy of prediction results.

Key words: highway, nested Logit model, cumulative prospect theory, risk preference coefficient

CLC Number: 

  • U491

Table 1

Statistical distribution of investigators"

因素选项频率/%因素选项频率/%
年龄<25岁36.00月收入<5 000元34.80
25~35岁39.005 000~10 000元30.80
>35岁25.00>10 000元24.50
职业状态固定工作53.50教育水平高中及以下20.30
学生32.00大学生/专科45.50
其他14.50研究生及以上34.30
驾龄≤2年53.00小汽车拥有0辆40.80
2~4年25.801辆43.30
>4年21.30>2辆16.00

Fig.1

Characteristic frequency distribution of highway travel in toll holidays"

Fig.2

Frequency distribution of highway departure time in toll holidays"

Fig.3

Relationship between subjective utility(probability) and actual utility(probability)"

Table 2

Types and load capacity of toll buses on highways"

车型额载人数
一类客车7座以下(含7座)
二类客车8~19座(含19座)
三类客车20~39座(含39座)
四类客车40座以上(含40座)

Fig.4

Nested logit model structure based on travel time travel mode"

Table 3

Parameter φ value list"

调查规模/人φ取值调查规模/人φ取值
>10000.9~1.0300~5000.3~0.5
800~10000.7~0.9<3000.1~0.3
500~8000.5~0.7

Table 4

Variable definition and value"

因素变量取值变量名
个人及家庭经济属性性别男生取1,否则取2xgend
年龄1:<25岁;2:25~35岁;3:>35岁xage
月收入1:<5 000元;2:5 000~10 000元;3:>10 000元xincom
职业状态职业状态1固定工作取1,否则取2xjob1
职业状态2学生取1,否则取2xjob2
职业状态3其他工作取1,否则取2xjob3
教育水平教育水平1高中及以下取1,否则取2xedu1
教育水平2大学生、专科取1,否则取2xedu2
教育水平3研究生及以上取1,否则取2xedu3
驾龄1:<2年;2:2~4年;3:>4年xdage
小汽车拥有量1:0辆;2:1辆;3:2辆及以上xcnum
出行特征出行目的出行目的1哑变量,旅游休闲取1,否则取2xpur1
出行目的2哑变量,探亲访友取1,否则取2xpur2
出行目的3哑变量,其他取1,否则取2xpur3
陪同人数1:无;2:1人;3:2人;4:2人以上xcomp
出行耗时1:<1小时;2:1~2小时;3:2~4小时;4:>4小时xtime
乘坐车型1:小型客车;2:中巴;3:大巴xvehi
出发时段1:6∶00~9∶00;2:9∶00~12∶00;…;7:00∶00~06∶00xdepa
出行方案1:(时段1,车型1);…;21:(时段7,车型3)xdeci
舒适性1:差;2:中;3:好xcomf
便利性1:差;2:中;3:好xcomv

Table 5

Risk preference coefficient of different travel schemes with different income levels"

出行方案(k)输入水平出行方案(k)输入水平
Y=1Y=2Y=3Y=1Y=2Y=3
10.930.910.95120.980.990.99
20.990.991.00130.960.970.98
30.980.980.98140.980.990.99
40.840.940.96150.990.990.98
50.980.990.99160.990.990.99
60.960.950.95170.990.980.96
70.930.940.96180.980.990.99
80.980.970.97190.990.980.97
90.980.990.99200.990.990.99
100.950.880.88210.980.990.99
110.980.991.00----

Table 6

Calculation results of n-cumulative foreground value of travelers"

R组合效用价值函数累积权重CPV
1V1V2V3v(ΔV1)v(ΔV2)v(ΔV3)π1π2π3CPV1
0.31-4.56-0.440.34-10.24-1.010.200.0010.12-0.061
2V4V5V6v(ΔV4)v(ΔV5)v(ΔV6)π4π5π6CPV2
0.41-0.88-0.760.43-1.97-1.740.230.050.11-0.196
3V7V8V9v(ΔV7)v(ΔV8)v(ΔV9)π7π8π9CPV3
-0.33-0.878-2.41-0.75-1.98-5.380.110.040.01-0.195
4V10V11V12v(ΔV10)v(ΔV11)v(ΔV12)π10π11π12CPV4
0.21-2.98-1.630.26-6.66-3.650.280.010.09-0.358
5V13V14V15v(ΔV13)v(ΔV14)v(ΔV15)π13π14π15CPV5
0.24-3.14-1.930.25-7.06-4.340.190.010.04-0.215
6V16V17V18v(ΔV16)v(ΔV17)v(ΔV18)π16π17π18CPV6
0.21-0.75-30.830.22-4.56-61.590.140.07-0.13.491
7V19V20V21v(ΔV19)v(ΔV20)v(ΔV21)π19π20π21CPV7
0.05-42.860.350.05-95.940.350.060.000.04-0.061
实际决策出发时段:6=17∶00~21∶00;乘坐车型:1=小型客车

Table 7

Od value of main influencing factors in different departure periods"

出发时段xagexincomexjob3xedu1xdagexcnumxtime
R=10.6841.0032.7570.3140.8240.4970.436
R=20.5560.7761.6940.5261.1430.5050.501
R=30.5830.8971.6801.1341.0370.4240.643
R=40.8841.2200.7250.2250.9020.4150.512
R=50.6930.6980.9710.3860.6800.6560.519
R=60.4020.8861.0290.1980.7930.6000.534
R=7

Table 8

Comparison of prediction results only based on nested Logit model and based on nested Logit cumulative prospect theory model %"

出发时段实际选择比例巢式Logit模型巢式Logit-累积 前景理论
预测结果误差预测结果误差
总体误差22.2214.14
R=16.066.060.007.071.01
R=237.3743.436.0631.316.06
R=315.1512.123.0315.150.00
R=425.2530.305.0526.261.01
R=54.042.022.023.031.01
R=66.062.024.0411.115.05
R=76.064.042.026.060.00
1 贾洪飞, 龚勃文, 宗芳. 交通方式选择的非集计模型及其应用[J]. 吉林大学学报: 工学版, 2007, 37(6): 1288-1293.
Jia Hong-fei, Gong Bo-wen, Zong Fang. Disaggregation model of traffic mode selection and its application[J]. Journal of Jilin University(Engineering and Technology Edition), 2007, 37(6): 1288-1293.
2 Kumagai S J, Uchiyama H, Takashima S. Formation of bus network based on traffic mode selection model with disaggregate data[J]. Physics Letters A, 2011, 375(17): 1831-1838.
3 Ozbay K, Yanmaz-Tuzel O. Valuation of travel time and departure time choice in the presence of time-of-day pricing[J]. Transportation Research Part A Policy & Practice, 2008, 42(4): 577-590.
4 张旭, 栾维新, 赵冰茹. 基于非集计模型的武广线高铁与民航竞争研究[J]. 交通运输系统工程与信息, 2012, 12(6): 17-21.
Zhang Xu, Luan Wei-xin, Zhao Bing-ru. Research on competition between Wuhan Guangzhou high speed railway and civil aviation based on disaggregation model[J]. Transportation System Engineering and Information, 2012, 12(6): 17-21.
5 McFadden D, Train K. Mixed MNL models for discrete response[J]. Journal of Applied Econometrics, 2000, 15(5): 447-470.
6 李华民, 黄海军. 基于一种新效用函数形式的分层Logit模型[J]. 吉林大学学报: 工学版, 2009, 39(): 63-65.
Li Hua-min, Huang Hai-jun. Layered logit model based on a new utility function form[J]. Journal of Jilin University(Engineering and Technology Edition), 2009, 39(Sup.2): 63-65.
7 唐洁, 隽志才, 高林杰. 城市居民出行空间和方式联合选择模型研究[J]. 公路交通科技, 2010, 27(5): 83-87.
Tang Jie, Zhi-cai Juan, Gao Lin-jie. Research on joint choice model of urban residents' travel space and mode[J]. Highway Transportation Technology, 2010, 27(5): 83-87.
8 诸葛承祥, 邵春福, 李霞, 等. 通勤者出行时间与出行方式选择行为研究[J]. 交通运输系统工程与信息, 2012, 12(2): 130-135.
Cheng-xiang Zhu-ge, Shao Chun-fu, Li Xia, et al. Study on commuter travel time and travel mode selection behavior[J]. Transportation System Engineering and Information, 2012, 12(2): 130-135.
9 陈林. 基于Logit模型的成渝通道交通选择行为研究[D]. 成都: 西南交通大学交通运输与物流学院, 2013.
Chen Lin. Study on traffic choice behavior of Chengdu Chongqing corridor based on logit model[D]. Chengdu: School of Transportation and Logistics, Southwest Jiaotong University, 2013.
10 Kahneman D, Tversky A. Prospect theory: an analysis of decision under risk[J]. Econometrica, 1979, 47(2): 263-292.
11 Kahneman A T. Advances in prospect theory: cumulative representation of uncertainty[J]. Journal of Risk & Uncertainty, 1992, 5(4): 297-323.
12 Avineri E J T S. The effect of reference point on stochastic network equilibrium[J]. Transportation Science, 2006, 40(4): 409-420.
13 施海燕, 施放. 期望效用理论与前景理论之比较[J]. 统计与决策, 2007(11): 22-24.
Shi Hai-yan, Shi Fang. Comparison of expected utility theory and prospect theory[J]. Statistics and Decision Making, 2007(11): 22-24.
14 刘玉印, 刘伟铭, 吴建伟. 基于累积前景理论的出行者路径选择模型[J]. 华南理工大学学报: 自然科学版, 2010, 38(7): 84-89.
Liu Yu-yin, Liu Wei-ming, Wu Jian-wei. Travel path selection model based on cumulative prospect theory[J]. Journal of South China University of Technology(Natural Science Edition), 2010, 38(7): 84-89.
15 Hu L, Dong J, Lin Z. Modeling charging behavior of battery electric vehicle drivers: a cumulative prospect theory based approach[J]. Transportation Research, 2019, 102: 474-489.
16 Guan Y, Annaswamy A M, Tseng H E. Cumulative prospect theory based dynamic pricing for shared mobility on demand services[C]∥2019 IEEE 58th Conference on Decision and Control(CDC), 2019: 04824.
17 Jhala K, Natarajan B, Pahwa A. Prospect theory-based active consumer behavior under variable electricity pricing[J]. Smart Grid, IEEE Transactions on, 2019, 10(3): 2809-2819.
18 邢睿. 基于前景理论的城市居民交通出行方式选择研究[D]. 长沙: 长沙理工大学交通运输工程学院, 2014.
Xing Rui. Research on urban residents' travel mode selection based on prospect theory[D]. Changsha: School of Transportation Engineering, Changsha University of Technology, 2014.
19 马书红, 周烨超, 张艳. 基于NL-累计前景理论的出行方式选择预测模型研究[J]. 交通运输系统工程与信息, 2019, 19(4): 135-142.
Ma Shu-hong, Zhou Ye-chao, Zhang Yan. Study on travel mode selection prediction model based on NL cumulative prospect theory[J]. Transportation System Engineering and Information, 2019, 19(4): 135-142.
20 杨志勇. 基于前景理论的出发时刻和出行路径选择模型研究[D]. 哈尔滨: 哈尔滨工业大学交通科学与工程学院, 2007.
Yang Zhi-yong. Research on departure time and travel path selection model based on prospect theory[D]. Harbin: School of Transportation Science and Engineering, Harbin Institute of Technology, 2007.
21 秦世环. 基于前景理论的出行方式与路径联合选择行为研究[D]. 哈尔滨: 哈尔滨工业大学交通科学与工程学院, 2013.
Qin Shi-huan. Research on joint choice behavior of travel mode and route based on prospect theory[D]. Harbin: School of Transportation Science and Engineering, Harbin Institute of Technology, 2013.
[1] Yao-rong CHENG,Qian YANG,Guo-hua ZHENG. Tractor scheduling optimization of drop and pull transport in large⁃scale manufacturing enterprises considering carbon emission [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 893-899.
[2] Fang WANG,Jia HU,Sheng JING,Wei CHENG,Xiao-ying HE,Xiao-guang LI. Modeling and analysis of road speed micro model in long straight line section of desert [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 575-582.
[3] Zhi-jun TENG,Yu ZHANG,Hao-tian LI,Ming-yang SUN. Adaptive D⁃S evidence theory map matching algorithm of complex road network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 524-530.
[4] Yang LI,Lian-jun WANG. Applicability analysis of two dimensional modelingmethods for wide embankment composite foundation in high speed railway stations [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 621-630.
[5] Fang WANG,Xiao-guang LI,Hui GUO,Jia HU. Optimization of straight segment index between highway curves of desert grassland based on driver’s visual interest region [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 114-120.
[6] LI Ye, WANG Wei, XING Lu, WANG Hao, DONG Chang-yin. Improving traffic efficiency of highway by integration of adaptive cruise control and variable speed limit control [J]. 吉林大学学报(工学版), 2017, 47(5): 1420-1425.
[7] XU Jin, CHEN Wei, ZHOU Jia, LUO Xiao, SHAO Yi-ming. Correlation between steering and driver's workload [J]. 吉林大学学报(工学版), 2017, 47(2): 438-445.
[8] TANG Xiao-feng, GAO Feng, XU Guo-yan, DING Neng-gen, CAI Yao, LIU Jian-xing. Vehicle driving dynamics prediction based on highway intelligent space-vehicle framework theory [J]. 吉林大学学报(工学版), 2015, 45(5): 1395-1401.
[9] WANG Ying-jie,WANG Lei ,RONG Qi-guo,WU Yong-hui. Danger evaluation of debris flow along highway based on path analysis and extension method [J]. 吉林大学学报(工学版), 2014, 44(3): 895-900.
[10] ZHAN Wei, LYU Qing, SHANG Yue-quan. Analysis of gray-Markov forecasting for traffic accidents in highway tunnel group region [J]. 吉林大学学报(工学版), 2014, 44(01): 62-67.
[11] WANG Guo-lin, FU Nai-ji, ZHANG Jian, PEI Zi-rong. Simulation of the radial tire curing process based on K-R kinetic model [J]. 吉林大学学报(工学版), 2013, 43(03): 659-664.
[12] LIAO Jun-hong, SHAO Chun-fu, WU Hong-bo, SUN Yi-xuan, WANG Shu-ling. Calculation and assessment technique of highway 3D dynamic sight distance [J]. 吉林大学学报(工学版), 2013, 43(03): 640-645.
[13] XU Hong-guo, CHEN Xiu-feng, LIU San-bing. Prediction model of free-flow operation speed on mountain slope [J]. 吉林大学学报(工学版), 2012, 42(增刊1): 189-192.
[14] CHENG Yong-chun, GUO Qing-lin, TAN Guo-jin. Improved viscoelastic parameter identification for asphalt mixture [J]. , 2012, (03): 629-633.
[15] LI Xia,GAO Li,LIU Yu-guo. Simultaneous residential location and travel mode choice es-timation around rail transit station based on cross-nested logit model [J]. 吉林大学学报(工学版), 2011, 41(6): 1614-1617.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!