Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (3): 640-647.doi: 10.13229/j.cnki.jdxbgxb20211274
Xue WANG1,2(),Zhan-shan LI1,2,Ying-da LYU3()
CLC Number:
1 | 宋杰,肖亮,练智超,等. 基于深度学习的数字病理图像分割综述与展望[J]. 软件学报, 2021, 32(5): 1427-1460. |
Song Jie, Xiao Liang, Lian Zhi-chao, et al. Overview and prospect of deep learning for image segmentation in digital pathology[J]. Journal of Software, 2021, 32(5): 1427-1460. | |
2 | Mahmud T, Paul B, Fattah S A. PolypSegNet: a modified encoder-decoder architecture for automated polyp segmentation from colonoscopy images[J]. Computers in Biology and Medicine, 2021, 128:No.104119. |
3 | Ibtehaz N, Rahman M S. MultiResUNet: rethinking the U-net architecture for multimodal biomedical image segmentation[J]. Neural Networks, 2020, 121:74-87. |
4 | Zhang Yan, Lu Yao, Chen Wan-kun, et al. MSMANet: a multi-scale mesh aggregation network for brain tumor segmentation[J]. Applied Soft Computing, 2021, 110: No.107733. |
5 | Tang Yu-cheng, Gao Ri-qiang, Lee H, et al. Pancreas CT segmentation by predictive phenotyping[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention, Lima, Peru, 2021: 25-35. |
6 | 秦俊. 基于启发式算法的医学图像阈值分割方法研究[D]. 长春: 吉林大学计算机科学与技术学院, 2019. |
Qin Jun. Research on heuristic algorithms based medical image threshold segmentation[D]. Changchun: College of Computer Science and Technology, Jilin University, 2019. | |
7 | 周显国, 陈大可, 苑森淼. 基于改进模糊聚类分析的医学脑部MRI图像分割[J]. 吉林大学学报: 工学版, 2009, 39(2): 381-385. |
Zhou Xian-guo, Chen Da-ke, Yuan Sen-miao. Medical brain MRI images segmentation by improved fuzzy C-means clustering analysis[J]. Journal of Jilin University (Engineering and Technology Edition), 2009, 39(2): 381-385. | |
8 | 肖晓尧, 李雄飞, 张小利, 等. 基于多尺度的区域生长的图像分割算法[J]. 吉林大学学报: 工学版, 2017, 47(5): 1591-1597. |
Xiao Xiao-yao, Li Xiong-fei, Zhang Xiao-li, et al. Medical image segmentation algorithm based on multi-scale region growing[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(5): 1591-1597. | |
9 | Zhou San-ping, Wang Jin-jun, Zhang Meng-meng, et al. Correntropy-based level set method for medical image segmentation and bias correction[J]. Neurocomputing, 2017, 234: 216-229. |
10 | Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 3431-3440. |
11 | Brandao P, Mazomenos E B, Ciuti G, et al. Fully convolutional neural networks for polyp segmentation in colonoscopy[C]∥Medical Imaging 2017: Computer-Aided Diagnosis, Orlando, Florida, USA, 2017: No.101340F. |
12 | Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015: 234-241. |
13 | Azad R, Asadi-Aghbolaghi M, Fathy M, et al. Bi-directional convLSTM U-Net with densley connected convolutions[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Korea, 2019: 406-415. |
14 | Gu Ran, Wang Guo-tai, Song Tao, et al. CA-Net: comprehensive attention convolutional neural networks for explainable medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2021, 40(2): 699-711. |
15 | Wang Cai-yong, Wang Yun-long, Liu Yun-fan, et al. ScleraSegNet: an attention assisted U-Net model for accurate sclera segmentation[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2020, 2(1): 40-54. |
16 | Gu Zai-wang, Cheng Jun, Fu Hua-zhu, et al. CE-Net: context encoder network for 2D medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2019, 38(10): 2281-2292. |
17 | Zhou Z W, Siddiquee M M R, Tajbakhsh N, et al. UNet++:a nested U-Net architecture for medical image segmentation[C]∥Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Cham, 2018:3-11. |
18 | Huang Hui-min, Lin Lan-fen, Tong Ruo-feng, et al. UNet 3+: a full-scale connected unet for medical image segmentation[C]∥IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 2020: 1055-1059. |
19 | Jha D, Riegler M A, Johansen D, et al. DoubleU-Net: a deep convolutional neural network for medical image segmentation[C]∥IEEE 33rd International Symposium on Computer-Based Medical Systems, Rochester, MN, USA, 2020: 558-564. |
20 | Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]∥Thirty-first AAAI Conference on Artificial Intelligence, San Francisco, California, USA, 2017: 4278-4284. |
21 | Yu Chang-qian, Wang Jing-bo, Peng Chao, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[C]∥Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 325-341. |
22 | Jha D, Smedsrud P H, Riegler M A, et al. Kvasir-SEG: a segmented polyp dataset[C]∥International Conference on Multimedia Modeling, Daejeon, South Korea, 2020: 451-462. |
23 | Tomar N K, Jha D, Riegler M A, et al. FANet: a feedback attention network for improved biomedical image segmentation[J/OL]. [2020-12-25]. . |
24 | Jha D, Smedsrud P H, Riegler M A, et al. ResUNet++: an advanced architecture for medical image segmentation[C]∥IEEE International Symposium on Multimedia, San Diego, CA, USA, 2019: 225-230. |
25 | Zhang Zheng-xin, Liu Qing-jie, Wang Yun-hong. Road extraction by deep residual U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 749-753. |
[1] | Su-ming KANG,Ye-e ZHANG. Hadoop⁃based local timing link prediction algorithm across social networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 626-632. |
[2] | You QU,Wen-hui LI. Single-stage rotated object detection network based on anchor transformation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 162-173. |
[3] | Hong-wei ZHAO,Dong-sheng HUO,Jie WANG,Xiao-ning LI. Image classification of insect pests based on saliency detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2174-2181. |
[4] | Zhou-zhou LIU,Qian-yun ZHANG,Xin-hua MA,Han PENG. Compressed sensing signal reconstruction based on optimized discrete differential evolution algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2246-2252. |
[5] | Dong-ming SUN,Liang HU,Yong-heng XING,Feng WANG. Text fusion based internet of things service recommendation for trigger⁃action programming pattern [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2182-2189. |
[6] | Sheng-sheng WANG,Jing-yu CHEN,Yi-nan LU. COVID⁃19 chest CT image segmentation based on federated learning and blockchain [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2164-2173. |
[7] | Jun-cong LIN,Jun LEI,Meng CHEN,Shi-hui GUO,Xing GAO,Ming-hong LIAO. Real⁃time camera planning for dynamic multiple targets considering cinematographic visual properties [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2154-2163. |
[8] | Li-li REN,Zhi-jun WANG,Dong-mei YAN. Improved multi⁃verse algorithm with combined slime mould foraging behavior [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2190-2197. |
[9] | Yin-di YAO,Jun-jin HE,Yang-li LI,Dang-yuan XIE,Ying LI. ET0 simulation of self⁃constructed improved whale optimized BP neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1798-1807. |
[10] | Hong-wei ZHAO,Zi-jian ZHANG,Jiao LI,Yuan ZHANG,Huang-shui HU,Xue-bai ZANG. Bi⁃direction segmented anti⁃collision algorithm based on query tree [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1830-1837. |
[11] | Jie CAO,Xue QU,Xiao-xu LI. Few⁃shot image classification method based on sliding feature vectors [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1785-1791. |
[12] | Xiao-xue SUN,Hui ZHONG,Hai-peng CHEN. Statistical analysis system for students' examination results based on decision tree classification technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1866-1872. |
[13] | Meng-su ZHANG,Chun-tian LIU,Xi-jin LI,Yong-ping HUANG. Design of fuzzy comprehensive evaluation system for performance appraisal based on K⁃means clustering algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1851-1856. |
[14] | Chun-bo WANG,Xiao-qiang DI. Cloud storage integrity verification audit scheme based on label classification [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1364-1369. |
[15] | Dan-tong OUYANG,Yang LIU,Jie LIU. Fault diagnosis method based on test set under fault response guidance [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1017-1025. |
|