Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (1): 241-247.doi: 10.13229/j.cnki.jdxbgxb20211300

Previous Articles    

Edge detection algorithm of noisy remote sensing image under different illumination conditions

Wei-xuan MA1(),Yan ZHANG1,Chuan-xiang MA1,Sa ZHU2()   

  1. 1.School of Computer Science and Information Engineering,Hubei University,Wuhan 430062,China
    2.School of Remote Sensing and Information Engineering,Wuhan University,Wuhan 430072,China
  • Received:2021-11-29 Online:2023-01-01 Published:2023-07-23
  • Contact: Sa ZHU E-mail:ma461513@163.com;sazhu_rs@163.com

Abstract:

Aiming at the problem of random Gaussian noise in the process of remote sensing image acquisition caused by different lighting conditions, this paper studies the edge detection algorithm of noisy remote sensing image under different lighting conditions, so as to improve the accuracy of remote sensing image registration and recognition. Aiming at the random Gaussian noise in the process of remote sensing image acquisition under different illumination conditions, a windowed median filtering algorithm is constructed by combining the neighborhood mean filtering algorithm with the median filtering algorithm. The algorithm is used to filter the noisy remote sensing image to eliminate all kinds of noise conditions in the remote sensing image. For the denoised remote sensing image, the Canny operator is used to calculate the image gradient and constrain the maximum value. For the constrained gradient histogram of remote sensing image, the maximum interclass variance method is used to adaptively detect and connect the high and low thresholds of edges, and the edge detection of remote sensing image is completed by tracking edge pixels. The test results show that the algorithm can return the actual remote sensing image to the greatest extent, accurately detect the image edge information, and improve the accuracy of remote sensing image registration and recognition.

Key words: illumination conditions, noisy, remote sensing images, edge detection, filtering algorithm, maximum interclass variance

CLC Number: 

  • TP301

Fig.1

Implementation flow of windowed median filter algorithm"

Fig.2

Edge detection process"

Fig.3

River denoising results"

Fig.4

Road denoising results"

Fig.5

Edge extraction results"

Table 1

Remote sensing image registration and recognition accuracy based on different algorithms"

遥感图像配准精度识别精度
本文算法/%

基于深度残差网络

的算法/%

基于高斯曲率滤波

的算法/%

本文算法/%

基于深度残差网络

的算法/%

基于高斯曲率滤波

的算法/%

河流遥感图像98.495.396.097.692.793.9
道路遥感图像99.296.197.196.893.094.2
线路遥感图像97.192.096.895.988.493.7
建筑遥感图像98.995.796.796.191.595.2
1 兰传琳, 方佩章, 何楚. 基于先验模型优化的无人机遥感图像中几何轮廓目标检测方法[J]. 电视技术, 2019, 43(1): 5-10, 65.
Lan Chuan-lin, Fang Pei-zhang, He Chu. Geometric contour detection method in UAV remote sensing image based on prior model optimization[J]. Video Engineering, 2019, 43(1): 5-10, 65.
2 赵建鹏, 杨秀峰, 李国洪, 等. 基于面向对象的设施蔬菜高分遥感影像提取[J]. 江苏农业学报, 2019, 35(4): 911-918.
Zhao Jian-peng, Yang Xiu-feng, Li Guo-hong, et al. Object oriented extraction of high resolution remote sensing images of facility vegetables[J]. Journal of Jiangsu Agriculture, 2019, 35(4): 911-918.
3 刘丽霞, 李宝文, 王阳萍, 等. 改进Canny边缘检测的遥感影像分割[J]. 计算机工程与应用, 2019, 55(12): 54-58, 180.
Liu Li-xia, Li Bao-wen, Wang Yang-ping, et al. Remote sensing image segmentation based on improved Canny edge detection[J]. Computer Engineering and Applications, 2019, 55(12): 54-58, 180.
4 杨斌, 王翔. 基于深度残差去噪网络的遥感融合图像质量提升[J]. 激光与光电子学进展, 2019,56(16):88-97.
Yang Bin, Wang Xiang. Boosting quality of pansharpened images using deep residual denoising network[J]. Laser & Optoelectronics Progress, 2019, 56(16): 88-97.
5 张文坤, 汪西原, 宋佳乾. 基于分数阶微分差与高斯曲率滤波的边缘检测算法[J]. 计算机工程, 2019, 45(2): 213-219.
Zhang Wen-kun, Wang Xi-yuan, Song Jia-qian. Edge detection algorithm based on fractional differential difference and Gaussian curvature filtering[J]. Computer Engineering, 2019, 45(2): 213-219.
6 秦振涛, 杨茹. 基于结构性字典学习的毛儿盖遥感图像去噪研究[J]. 遥感技术与应用, 2019,34(4):793-798.
Qin Zhen⁃tao, Yang Ru. Remote sensing image of Mao'ergai denoising based on structured dictionary learning[J]. Remote Sensing Technology and Application, 2019, 34(4): 793-798.
7 袁宇丽. 基于机器学习和方向模板的遥感图像边缘检测方法[J]. 内江师范学院学报, 2020,35(8):51-55.
Yuan Yu-li. Remote sensing image edge detection method based on machine learning and haar template [J]. Journal of Neijiang Normal University, 2020, 35 (8): 51-55.
8 陈顺, 孟青青, 李登峰. 结合图像增强和改进Canny算子的遥感图像边缘检测[J]. 河南大学学报: 自然科学版, 2020, 50(5): 623-630.
Chen Shun, Meng Qing-qing, Li Deng-feng. Remote sensing image edge detection combined with image enhancement and improved Canny[J]. Journal of Henan University (Natural Science), 2020,50(5): 623-630.
9 王小兵. 融合提升小波阈值与多方向边缘检测的矿区遥感图像去噪[J]. 国土资源遥感, 2020,32(4):46-52.
Wang Xiao-bing. Denoising algorithm based on the fusion of lifting wavelet thresholding and multidirectional edge detection of remote sensing image of mining area[J]. Remote Sensing for Natural Resources, 2020, 32(4): 46-52.
10 王冬云, 唐楚, 鄂世举, 等. 基于导向滤波Retinex和自适应Canny的图像边缘检测[J]. 光学精密工程, 2021, 29(2): 443-451.
Wang Dong-yun, Tang Chu, Shi-ju E, et al. Image edge detection based on guided filter Retinex and adaptive Canny[J]. Optics and Precision Engineering, 2021, 29(2): 443-451.
11 黄巍, 黄辉先, 徐建闽, 等. 基于Canny边缘检测思想的改进遥感影像道路提取方法[J]. 国土资源遥感, 2019, 31(1): 65-70.
Huang Wei, Huang Hui-xian, Xu Jian-min, et al. An improved road extraction method for remote sensing images based on Canny edge detection[J]. Remote Sensing for Natural Resources, 2019, 31(1): 65-70.
12 王小鹏, 文昊天, 王伟, 等. 形态学边缘检测和区域生长相结合的遥感图像水体分割[J]. 测绘科学技术学报, 2019, 36(2): 149-154, 160.
Wang Xiao-peng, Wen Hao-tian, Wang Wei, et al. Water segmentation of remote sensing image using morphological edge detection and region growing[J]. Journal of Geomatics Science and Technology, 2019, 36(2): 149-154, 160.
13 张洪群, 顾吟雪, 郭擎. 灰色关联分析与模糊推理边缘检测图像融合法[J]. 遥感信息, 2020, 35(1): 15-27.
Zhang Hong-qun, Gu Yin-xue, Guo Qing. Image fusion based edge detection of grey relational analysis and fuzzy inference[J] Remote Sensing Information, 2020, 35(1): 15-27.
14 苑希民, 韩超, 徐浩田, 等. 基于分形理论与SVM的河冰高分遥感影像智能识别方法研究[J]. 自然灾害学报, 2021, 30(2): 117-126.
Yuan Xi-min, Han Chao, Xu Hao-tian, et al. Research on intelligent recognition method of river ice remote sensing image based on fractal theory and SVM [J]. Journal of Natural Disasters, 2021, 30(2): 117-126.
15 吴从中, 陈曦, 詹曙. 结合残差编解码网络和边缘增强的遥感图像去噪[J]. 遥感学报, 2020, 24(1): 27-36.
Wu Cong-zhong, Chen Xi, Zhan Shu. Remote sensing image denoising using residual encoder-decoder networks with edge enhancement[J]. Journal of Remote Sensing, 2020, 24(1): 27-36.
[1] Xiong-fei LI,Jia-jing WU,Xiao-li ZHANG,Ze-yu WANG,Yun-cong FENG. Remote sensing image fusion algorithm based on relative total variation structure extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1775-1784.
[2] Jian LI,Kong-yu LIU,Xian-sheng REN,Qi XIONG,Xue-feng DOU. Application of canny algorithm based on adaptive threshold in MR Image edge detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 712-719.
[3] LIU Shu, JIANG Qi-gang, ZHU Hang, LI Xiao-dong. Reconstruction of Landsat NDVI time series of Xianghai natural deserve based on a hybrid filtering algorithm Hyb-F [J]. 吉林大学学报(工学版), 2018, 48(3): 957-967.
[4] CHE Xiang-jiu, ZHANG Sun-min. Edge extraction method based on ant colony asynchronous update strategy [J]. 吉林大学学报(工学版), 2017, 47(5): 1577-1582.
[5] YAN Fei, ZHOU Chang-jiu, TIAN Yan-tao. Image edge points detection algorithm for object localization [J]. 吉林大学学报(工学版), 2016, 46(6): 2103-2110.
[6] YU De-xin, LIU Chun-yu, ZHENG Kun, GUO Ya-juan, ZHAO Xin. Space occupancy estimating method based on remote sensing images [J]. 吉林大学学报(工学版), 2016, 46(3): 764-769.
[7] ZHANG Wen-jie, XIONG Qing-yu, SHI Wei-ren, CHEN Shu-han. Weighted neighbor-region based multi-level fuzzy edge detection method [J]. 吉林大学学报(工学版), 2015, 45(3): 998-1004.
[8] ZHAO Hong-wei, CHEN Xiao, LONG Man-li, PEI Shi-hui. Image edge detection based on Riesz transformation [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 133-137.
[9] QU Zhi-guo, WANG Ping, GAO Ying-hui, WANG Peng, SHEN Zhen-kang. Contour detection based on switching surround suppression [J]. , 2012, (06): 1602-1607.
[10] QU Zhi-guo, WANG Ping, GAO Ying-hui, WANG Peng, SHEN Zhen-kang, LI Jiang. Edge detection based on feature fusion of USAN area [J]. , 2012, (03): 759-765.
[11] SUN Ming-chao, ZHANG Chong, LIU Jing-hong. Fusion of visible and infrared images based on multi-scale image enhancement [J]. , 2012, (03): 738-742.
[12] GUO Yu-bo,YAO Yu,DI Xiao-guang . Subpixel location algorithm for circle target center based on spatial moment [J]. 吉林大学学报(工学版), 2009, 39(01): 160-163.
[13] TONG Qing-bin1,DING Zhen-liang1,DONG Yu-bing2,YUAN Feng1 . Subpixel localization algorithm of circle parameters based on still image of small parts [J]. 吉林大学学报(工学版), 2009, 39(01): 154-159.
[14] Zhang Jing,Wang Guo-hong, Liu Fu-tai . Edge detection in SAR segmentation based on regularization method [J]. 吉林大学学报(工学版), 2008, 38(01): 206-210.
[15] Yao Jian-jun, Cong Da-cheng, Jiang Hong-zhou, Wu Zhen-shun, Han Jun-wei . ANNbased adaptive phase corrector applied in electro-hydraulic servo system [J]. 吉林大学学报(工学版), 2007, 37(04): 930-934.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!