Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (1): 61-71.doi: 10.13229/j.cnki.jdxbgxb20210596

Previous Articles     Next Articles

Moving horizon optimization control of SCR system based on hierarchical controller

Yao SUN1(),Yun-feng HU1,Jie-min ZHOU2,Huan CHENG2,Ting QU1(),Jing-hua ZHAO1,3,Hong CHEN4   

  1. 1.State Key Laboratory of Automotive Simulation and Control,Changchun 130022,China
    2.Technology Center of Dongfeng Commercial Vehicle,Wuhan 430056,China
    3.College of Computer Science and Technology,Jilin Normal University,Siping 136000,China
    4.College of Electronic and Information Engineering,Tongji University,Shanghai 200092,China
  • Received:2021-06-30 Online:2023-01-01 Published:2023-07-23
  • Contact: Ting QU E-mail:syao@jlu.edu.cn;quting@jlu.edu.cn

Abstract:

To maintain NO x conversion efficiency and reduce urea consumption of urea-SCR system, this paper designed a novel hierarchical controller. The up-level controller was a MPC controller to optimize the target ammonia coverage ratio online. The low-level controller was a triple step method controller to fast track the reference using steady-like control, reference feedforward control and gain-scheduling feedback control. Compare the controller performance in MIL environment and all key indicators improved with the cascaded controller. Ammonia slip decreased over 85%, and specific NO x emission declined 27.4%, while the urea consumption also decreased by 5%. The results show that the optimized strategy proposed in this paper has strong application value.

Key words: automatic control technology, urea-SCR system, hierarchical controller, model predictive control, triple step tracking controller

CLC Number: 

  • U463.6

Fig.1

Hierarchical controller of SCR system"

Fig.2

Configuration of one cell reduced order SCR model"

Fig.3

One cell CSTR model of SCR system"

Table 1

Parameter identification results"

待辨识参数辨识结果
K1253 480
K2979 000
K3127 900
K433 050
K592 850
E1542.4
E22 450
E35 598
E42 546.8
E510 198
θMAX50

Fig.4

Comparison between simulation result of SCR model and testing results"

Fig.5

Comparative results of first group"

Fig.6

Comparative results of second group"

1 中华人民共和国生态环境部.柴油货车污染治理攻坚战行动计划[J]. 商用汽车, 2019, 339(1): 6.
Ministry of Ecology and Environment of the People's Republic of China. Diesel truck pollution control battle action plan[J]. Commercial Vehicle, 2019, 339(1): 6.
2 Zhao J, Chen Z, Hu Y, et al. Urea-SCR process control for diesel engine using feedforward-feedback nonlinear method[C]//The 9th IFAC Symposium on Advanced Control of Chemical Processes, Whistler: Canda, 2015: 367-372.
3 Reşitoğlu İ A, Altinişik K, Keskin A. The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems[J]. Clean Technologies and Environmental Policy, 2015, 17(1): 15-27.
4 Yuan X, Liu H, Gao Y. Diesel engine SCR control: current development and future challenges[J]. Emission Control Science and Technology, 2015, 1(2): 121-133.
5 Joshi A. Review of vehicle engine efficiency and emissions[J]. SAE International Journal of Advances and Current Practices in Mobility, 2019, 1: 734-761.
6 中华人民共和国生态环境部. 中国移动源环境管理年报(2020)[J]. 中国能源, 2020(8): 1.
Ministry of Ecology and Environment of the People's Republic of China. China mobile source environmental management annual report (2020)[J]. China Energy, 2020(8): 1.
7 Johnson T, Joshi A. Review of vehicle engine efficiency and emissions[J]. SAE International Journal of Engines, 2018, 11(6): 1307-1330.
8 Charlton S, Dollmeyer T, Grana T. Meeting the US heavy duty EPA 2010 standards and providing increased value for the customer[J]. SAE International Journal of Commercial Vehicle, 2010, 3(1): 101⁃110.
9 Walker A. Future challenges and incoming solutions in emission control for heavy duty diesel vehicles[J]. Topics in Catalysis, 2016, 59(8/9): 695⁃707.
10 Yao M, Wang J. Model-based control of automotive selective catalytic reduction systems with road grade preview[C]//Proceedings of the American Control Conference, Milwaukee,USA, 2018: 7-12.
11 Johnson T. Vehicular emissions in review[J]. SAE International Journal of Engines, 2013, 6(2): 699-715.
12 Shimizu K, Satsuma A. Hydrogen assisted urea-SCR and NH3-SCR with silver–alumina as highly active and SO2-tolerant de-NO x catalysis[J]. Applied Catalysis B: Environmental, 2007, 77: 202⁃205.
13 Hollauf B, Breitschädel B, Sacher T, et al. Highest NO x conversion in SCR catalysts through model based control[C]//SAE Paper, 2011-26-0042.
14 Upadhyay D, Nieuwstadt M V. Model based analysis and control design of a Urea-SCR deNO x aftertreatment system[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 2006, 128: 737-741.
15 Devarakonda M, Parker G, Johnson J H, et al. Model- based estimation and control system development in a Urea-SCR aftertreatment system[C]∥SAE Paper, 2008-01-1324.
16 Chi J N, Dacosta H F M. Modeling and control of a urea-SCR aftertreatment system[C]∥SAE Paper, 2005-01-0966.
17 胡静, 赵彦光, 陈婷,等. 重型柴油机尿素SCR后处理系统的控制策略研究[J]. 内燃机工程, 2011, 32(2): 1-5.
Hu Jing, Zhao Yan-guang, Chen Ting, et al. Study of control strategy for Urea-SCR after-treatment system of heavy duty diesel engine[J]. Chinese Internal Combustion Engine Engineering, 2011, 32(2): 1-5.
18 胡静, 赵彦光, 陈婷,等. 重型柴油机SCR后处理系统尿素喷射电子控制单元开发[J]. 内燃机工程, 2011, 32(1): 8-11.
Hu Jing, Zhao Yan-guang, Chen Ting, et al. Development of urea dosing control unit for SCR after-treatment system of heavy duty diesel engine[J]. Chinese Internal Combustion Engine Engineering, 2011, 32(1): 8-11.
19 Hsieh M F, Wang J. Design and experimental validation of an extended kalman filter-based NO x concentration estimator in selective catalytic reduction system applications[J]. Control Engineering Practice, 2011, 19(4): 346-353.
20 Aliramezani M, Koch C R, Hayes R E. Estimating tailpipe NO x concentration using a dynamic NO x / ammonia cross sensitivity model coupled to a three state control oriented SCR model[J]. IFAC-Papers Online, 2016, 49(11): 8-13.
21 Stadlbauer S, Waschl H, del Re L. SCR ammonia dosing control by a nonlinear model predictive controller[J]. IFAC Proceedings Volumes, 2014, 47(3): 3018-3023.
22 汤佳明. 基于氨存储控制策略的 SCR 系统研究与开发[D]. 无锡: 江南大学机械工程学院, 2018.
Tang Jia-ming. Research and development of SCR system based on the control strategy of ammonia storage[D]. Wuxi: College of Mechanical Engineering, Jiangnan University, 2018.
23 谢澜涛, 谢磊, 苏宏业.不确定系统的鲁棒与随机模型预测控制算法比较研究[J]. 自动化学报,2017,43(6): 969-992.
Xie Lan-tao, Xie Lei, Su Hong-ye. A comparative study on algorithms of robust and stochastic MPC for uncertain systems[J]. Acta Automatica Sinica, 2017, 43(6): 969- 992.
24 席裕庚, 李德伟, 林姝. 模型预测控制-现状与挑战[J]. 自动化学报,2013,39(3): 222-236.
Xi Yu-geng, Li De-lin, Lin Zhu. Model predictive control - status and challenges[J]. Acta Automatica Sinica, 2013,39(3): 222-236.
25 Qin S J, Badgwell T A. A survey of industrial model predictive control technology[J]. Control Engineering Practice, 2003, 11(7): 733-764.
26 Chen H, Gong X, Liu Q F, et al. Triple-step method to design non-linear controller for rail pressure of gasoline direct injection engines[J]. IET Control Theory and Applications, 2014, 8(11): 948-959.
27 Zhao H Y, Gao B Z, Ren B T, et al. Integrated control of in-wheel motor electric vehicles using a triple-step nonlinear method[J]. Journal of the Franklin Institute- Engineering and Applied Mathematics, 2015, 352(2): 519-540.
28 赵靖华, 陈志刚, 胡云峰,等. 基于"三步法"的柴油机urea-SCR系统控制设计[J]. 吉林大学学报:工学版, 2015, 45 (6): 182-192.
Zhao Jing-hua, Chen Zhi-gang, Hu Yun-feng, et al. Design of diesel engine's urea SCR system controller using triple-step method[J]. Journal of Jilin University (Engineering and Technology Edition), 2015, 45(6): 182-192.
29 侯加林,王一鸣,展志刚,等. 基于改进型非线性最小二乘法的作物模型隐含参数估计[J]. 农业机械学报,2015, 36(5): 75-79.
Hou Jia-lin, Wang Yi-ming, Zhan Zhi-gang, et al. Application of nonlinear least squares method to crop growth structure function simulation model[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 36(5): 75-79.
30 李晓东. 同步发电机励磁系统建模及参数辨识[D]. 南京: 南京理工大学自动化学院,2010.
Li Xiao-dong. The modeling and parameter identification of excitation system of Synchronous generator[D]. Nanjing: College of Automation, Nanjing University of Technology, 2010.
[1] De-jun WANG,Kai-ran ZHANG,Peng XU,Tian-biao GU,Wen-ya YU. Speed planning and control under complex road conditions based on vehicle executive capability [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 643-652.
[2] Bo XIE,Rong GAO,Fu-qiang XU,Yan-tao TIAN. Stability control of human⁃vehicle shared steering system under low adhesion road conditions [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 713-725.
[3] Fu-yuan SHEN,Wei LI,Dong-nian JIANG. Life prediction and self⁃maintenance method of quadrotor unmanned aerial vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 841-852.
[4] De-feng HE,Dan ZHOU,Jie LUO. Efficient cooperative predictive control of predecessor⁃following vehicle platoons with guaranteed string stability [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 726-734.
[5] Jin-wu GAO,Yi-lin WANG,Hua-yang LIU,Yi-da WANG. Decoupling control for proton exchange membrane fuel cell air supply system based on sliding mode observer [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2156-2167.
[6] Yun-feng HU,Tong YU,Hui-ce YANG,Yao SUN. Optimal control method of fuel cell start⁃up in low temperature environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2034-2043.
[7] Jin-wu GAO,Zhi-huan JIA,Xiang-yang WANG,Hao XING. Degradation trend prediction of proton exchange membrane fuel cell based on PSO⁃LSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2192-2202.
[8] Ang LI,Hong-yuan YANG,Xiao-meng LEI,Kai-wen SONG,Cheng-hui QIAN. Closed-loop control of traveling attitude of hexapod robot based on equivalent connecting link model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1696-1708.
[9] Wen-jing WU,Yong-bin ZHAN,Li-li YANG,Run-chao CHEN. Coordinated control method of variable speed limit in on⁃ramp area considering safety distance [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1315-1323.
[10] Wen-hang LI,Tao NI,Ding-xuan ZHAO,Pan-hong ZHANG,Xiao-bo SHI. Active suspension control method of high mobility rescue vehicle based on ensemble Kalman filter [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2816-2826.
[11] Hang ZHU,Han-bo YU,Jia-hui LIANG,Hong-ze LI. Improved algorithm of UAV search based on electric field model and simulation analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 3029-3038.
[12] Hao-nan PENG,Ming-huan TANG,Qi-wen ZHA,Wei-zhong WANG,Wei-da WANG,Chang-le XIANG,Yu-long LIU. Optimization⁃based lane changing trajectory planning approach for autonomous vehicles on two⁃lane road [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2852-2863.
[13] Zhi-jun YANG,Zhong-yi GAO,Li-jun WANG,Guan-xin HUANG,Yu-tai WEI. Model predictive control algorithm for rigid⁃flexible coupling positioning stage [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2806-2815.
[14] Bin XIAN,Shi-jing ZHANG,Xiao-wei HAN,Jia-ming CAI,Ling WANG. Trajectory planning for unmanned aerial vehicle slung⁃payload aerial transportation system based on reinforcement learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2259-2267.
[15] Fang XU,Jun-ming ZHANG,Yun-feng HU,Ting QU,Yi QU,Qi-fang LIU. Lateral and longitudinal coupling real⁃time predictive controller for intelligent vehicle path tracking [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2287-2294.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!