Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (12): 2816-2826.doi: 10.13229/j.cnki.jdxbgxb20211448

Previous Articles     Next Articles

Active suspension control method of high mobility rescue vehicle based on ensemble Kalman filter

Wen-hang LI1(),Tao NI2,Ding-xuan ZHAO2(),Pan-hong ZHANG2,Xiao-bo SHI2   

  1. 1.College of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China
    2.School of Vehicle and Energy,Yanshan University,Qinhuangdao 066004,China
  • Received:2021-12-30 Online:2022-12-01 Published:2022-12-08
  • Contact: Ding-xuan ZHAO E-mail:whli19@mails.jlu.edu.cn;zdx-yw@ysu.edu.cn

Abstract:

A control strategy of active suspension systems was proposed for high-mobility rescue vehicles—model predictive control strategy based on ensemble Kalman Filter technology(EnKF-MPC). Firstly, dynamic model of the active suspension system was completed for high-mobility rescue vehicles. The data of the vehicle dynamic system and the vehicle-mounted positioning system were fused through the Ensemble Kalman Filter technology in order to realize the accurate estimation of the vehicle's pose information; Aiming at the problem of vertical positioning error for the vehicle positioning system, a point cloud matching algorithm was designed to complete the accurate evaluation of the vehicle's vertical direction information; in addition, a model predictive control strategy was proposed, which used the vehicle's pose information obtained by the ensemble Kalman filter algorithm and the road profile information obtained by the on-board lidar as system inputs to control the active suspension system of the vehicle to improve the ride comfort and handling stability of the vehicle. Finally, a real vehicle test was carried out. The research results show that the vertical direction error of the proposed vehicle pose estimation algorithm is about ±3.100?cm, the pitch angle error is about ±0.175°, and the roll angle error is about ±0.210°. Compared with the passive suspension system, the proposed active suspension control method reduced the root mean square value of the vertical displacement by 37%, the pitch angle by 35%, and the roll angle by 35%, which significantly improved the ride comfort and handling stability of the vehicle.

Key words: road transportation, active suspension system, ensemble Kalman filter, model predictive control

CLC Number: 

  • TP273

Fig.1

Schematic diagram of the overall flow of the system"

Fig.2

Nine-degree-freedom vehicle model"

Fig.3

Schematic diagram of point cloud matching"

Table 1

Vehicle parameters"

符号含义数值单位
M车身质量3.6×104kg
T轮胎的宽度0.4m
H车体中心高度2.1m
V平均行驶速度5.00km/h
JYY轴转动惯量2.46×105kg·m2
JXX轴转动惯量1.12×105kg·m2
Kmi轮胎刚度系数1.90×106N/m

Fig.4

Vehicle test environment"

Fig.5

Accuracy experiment test"

Table 2

Pose evaluation errors comparison"

路面类型参数未融合EnKF
图4(b)垂向误差/cm4.3002.950
俯仰角误差/(°)0.1950.155
侧倾角误差/(°)0.2160.190
图4(c)垂向误差/cm4.6303.100
俯仰角误差/(°)0.2160.175
侧倾角误差/(°)0.2530.210

Fig.6

Accuracy experiment test"

Fig.7

Vehicle suspension test"

Table 3

RMS average of suspension system"

路面类型参数PASMPCEnKF-MPC
图4(c)垂向/m0.05350.04170.0338
俯仰角/(°)0.55000.42350.3575
侧倾角/(°)0.26500.19880.1722
1 高路路, 马飞, 周志鸿, 等. 应急救援车辆产品概况[J]. 凿岩机械气动工具, 2017(1):52-61.
Gao Lu-lu, Ma Fei, Zhou Zhi-hong, et al. Products overview of emergency rescue vehicle[J]. Rock Drilling Machinery & Pneumatic Tools, 2017(1): 52-61.
2 刘清河,和题,刘燕宁. 抢险救援车技术现状分析及展望[J]. 中国应急救援,2010(5):16-17.
Liu Qin-he, He Ti, Liu Yan-ning. Analysis and prospect of rescue vehicle technology[J]. China Emergency Rescue, 2010(5):16-17.
3 Xia Yuan-qing, Xu Ying-wei, Pu Fan, et al. Active disturbance rejection control for active suspension system of tracked vehicles[C]∥2016 IEEE International Conference on Industrial Technology, Taipei, C h i n a , 2016:No.16035629.
4 Waghmare D B, Asutkar V G, Patre B M. Extended disturbance observer based robust sliding mode control for active suspension system[J]. International Journal of Dynamics and Control, 2021, 9:1681-1694.
5 Pan Hui-hui, Sun Wei-chao, Gao Hui-jun, et al. Nonlinear tracking control based on extended state observer for vehicle active suspensions with performance constraints[J]. Mechatronics, 2015, 30: 363-370.
6 Sun W C, Gao H J, Kaynak O. Finite frequency Hcontrol for vehicle active suspension systems[J]. IEEE Transactions on Control Systems Technology, 2011, 19(2): 416-422.
7 Yamashita M, Fujimori K, Hayakawa K, et al. Application of H control to active suspension systems[J]. IFAC Proceedings Volumes, 1993, 26(2): 87-90.
8 Liu Lei, Li Xiang-sheng, Liu Yan-jun, et al. Neural network based adaptive event trigger control for a class of electromagnetic suspension systems[J]. Control Engineering Practice, 2021, 106: No.104675.
9 Ding Fei, Li Qian-long, Jiang Chao, et al. Event-triggered control for nonlinear leaf spring hydraulic actuator suspension system with valve predictive management[J]. Information Sciences, 2021, 551: 184-204.
10 Zhao F, Ge S, Tu F W, et al. Adaptive neural network control for active suspension system with actuator saturation[J]. IET Control Theory & Applications, 2016, 10(14): 1696-1705.
11 Huang Ying-bo, Na Jing, Wu Xing, et al. Adaptive control of nonlinear uncertain active suspension systems with prescribed performance[J]. ISA Transactions, 2015, 54:145-155.
12 Maleki N, Sedigh A K, Labibi B. Robust model reference adaptive control of active suspension system[C]∥2006 14th Mediterranean Conference on Control and Automation, Ancona, Italy, 2006: No.9189170.
13 李宇昊,赵又群. 基于双层控制策略的四轮独立转向无人驾驶汽车路径跟踪[J]. 江苏大学学报:自然科学版, 2022,43(4): 386-393.
Li Yu-hao, Zhao You-qun. Path tracking of 4WIS autonomous vehicle based on double layer control strategy[J]. Journal of Jiangsu University(Natural Science Edition), 2022,43(4): 386-393.
14 姚雪莲,丁东东,杨艺,等. 汽车驾驶机器人的自适应执行器故障补偿控制设计[J]. 江苏大学学报:自然科学版,2021, 42(6): 642-647.
Yao Xue-lian, Ding Dong-dong, Yang Yi, et al. Failure compensation control design of adaptive actuator for vehicle robot driver[J]. Journal of Jiangsu University(Natural Science Edition), 2021, 42(6): 642-647.
15 Bender E K. Optimum linear preview control with application to vehicle suspension[J]. J Basic Eng, 1968,90(2):213-221.
16 Iwata Y, Nakano M. Optimum preview control of vehicle air suspension[J]. Bull Jpn Soc Mech Eng, 1976,19(138):1485-1489.
17 Iwata Y, Nakano M. Optimal preview control of vehicle suspension[J]. Bull Jpn Soc Mech Eng, 1976, 19(129): 265-273.
18 Oraby W A H, Aly M A, El-Demerdash S M, et al. Influence of active suspension preview control on the vehicle lateral dynamics[C]∥SAE Technology Paper, 2007-01-2347.
19 Youn I, Tchamna R, Lee S H, et al. Preview suspension control for a full tracked vehicle[J]. International Journal of Automotive Technology, 2014, 15: 399-410.
20 Göhrle C, Schindler A. Road profile estimation and preview control for low band width active suspension systems[J]. IEEE/ASME Trans on Mechatronics, 2015, 20: 2299-2310.
21 Theunissen J, Sorniotti A, Gruber P. Regionless explicit model predictive control of active suspension systems with preview[J]. IEEE Transaction on Industrial Electronics, 2020, 67, 4877-4888.
22 Lee K T, Dai M J, Chuang C C. Temperature-compensated model for lithium-ion polymer batteries with extended Kalman filter state-of-charge estimation for an implantable charger[J]. IEEE Trans Ind Electron, 65(1): 589-596.
23 Fan R, Liu Y, Huang R, et al. Precise fault location on transmission lines using ensemble Kalman filter[J]. IEEE Trans Power Deliv, 33(6): 3252-3255.
24 Jiaolong Y, Hongdon L, Dylan C, et al. Go-ICP: a globally optimal solution to 3D ICP point-set registration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(11): 2241-2254.
25 姜晓通,戴宁,张长东,等. 基于“滑移”主方向自适应采样的ICP 算法优化研究[J]. 中国机械工程, 2014, 25(4): 497-502.
Jiang Xiao-tong, Dai Ning, Zhang Chang-dong, et al. Research on ICP algorithm optimization based on "slap" principal direction adaptive sampling[J]. China Mechanical Engineering, 2014, 25(4): 497-502.
[1] Yun-feng HU,Tong YU,Hui-ce YANG,Yao SUN. Optimal control method of fuel cell start⁃up in low temperature environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2034-2043.
[2] Wen-jing WU,Yong-bin ZHAN,Li-li YANG,Run-chao CHEN. Coordinated control method of variable speed limit in on⁃ramp area considering safety distance [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1315-1323.
[3] Hao-nan PENG,Ming-huan TANG,Qi-wen ZHA,Wei-zhong WANG,Wei-da WANG,Chang-le XIANG,Yu-long LIU. Optimization⁃based lane changing trajectory planning approach for autonomous vehicles on two⁃lane road [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2852-2863.
[4] Zhi-jun YANG,Zhong-yi GAO,Li-jun WANG,Guan-xin HUANG,Yu-tai WEI. Model predictive control algorithm for rigid⁃flexible coupling positioning stage [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2806-2815.
[5] Shu-you YU,Huan CHANG,Ling-yu MENG,Yang GUO,Ting QU. Disturbance observer based moving horizon control for path following problems of wheeled mobile robots [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1097-1105.
[6] Chao JIA,Hong-ze XU,Long-sheng WANG. Nonlinear model predictive control for automatic train operation based on multi⁃point model [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1913-1922.
[7] Miao-miao MA,Jun-jun PAN,Xiang-jie LIU. Model predictive load frequency control of microgrid with electrical vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1644-1652.
[8] LI Jing, ZHANG Jia-xu. Integrated control of vehicle chassis system based on robust L2-L/H method [J]. 吉林大学学报(工学版), 2016, 46(6): 1757-1764.
[9] TANG Xiao-feng, GAO Feng, XU Guo-yan, DING Neng-gen, CAI Yao, LIU Jian-xing. Vehicle driving dynamics prediction based on highway intelligent space-vehicle framework theory [J]. 吉林大学学报(工学版), 2015, 45(5): 1395-1401.
[10] XU Fang, JIN Wei-wei, CHEN Hong, ZHANG Zhen-wei. Hardware implementation method for model predictive control on a FPGA chip [J]. 吉林大学学报(工学版), 2014, 44(4): 1042-1050.
[11] SHI Yi-ran, TIAN Yan-tao, SHI Hong-wei, ZHANG Li. Modified Volterra model based nonlinear model predicting control for air-fuel ratio of SI engines [J]. 吉林大学学报(工学版), 2014, 44(2): 538-547.
[12] LI Gang, ZONG Chang-fu, CHEN Guo-ying, HONG Wei, HE Lei. Integrated control for X-by-wire electric vehicle with 4 independently driven in-wheel motors [J]. , 2012, 42(04): 796-802.
[13] LI Gang, ZONG Chang-fu, JIANG Li-yong, LIANG He-qi, HONG Wei. Active front steering and direct yaw moment integrated control algorithm [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 54-58.
[14] YANG Jian-sen, GUO Kong-hui, DING Hai-tao, HAO Bao-qing, LI Fei. Vehicle integrated chassis control based on model predictive control [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 1-5.
[15] ZHANG Ju, DING Jing. Explicit model predictive control of DC-DC converters [J]. 吉林大学学报(工学版), 2011, 41(增刊1): 270-274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. 吉林大学学报(工学版), 2005, 35(02): 116 -0121 .
[2] Yue Jian-wei,Jiang Xin-liang . Macro computational model of rapid wall[J]. 吉林大学学报(工学版), 2006, 36(05): 824 -0828 .
[3] Shang Yan-geng;Sun Da-qian;Lang Bo;Zhang Xian-bin. Effects of intermetallic compounds on the properties of Sn-Ag-Cu lead free solder joints
[J]. 吉林大学学报(工学版), 2006, 36(06): 846 -0850 .
[4] PENG Qi-yuan,XU Jin,ZHENG Sheng-bao,SHAO Yi-ming,DENG Tian-min. Effect of road pavement material change at tunnel entrance and exit on vehicle operation and optimization of transition location[J]. 吉林大学学报(工学版), 2009, 39(06): 1497 -1503 .
[5] Huang Zhiqiang , Wang Shuxun , Wang Bo. New Method for 4D Parameters Estimation in Nearfield Sources[J]. 吉林大学学报(工学版), 2006, 36(01): 72 -0076 .
[6] WANG Sheng-Sheng, WANG Zhao-Dan, LIU Da-You, LI Xin, ZHANG Hui-Jie. Detailed topological relation model of directed line objects[J]. 吉林大学学报(工学版), 2009, 39(05): 1292 -1296 .
[7] LU Jin-Zhong, LUO Kai-Yu, CHENG Ye-Jian, YIN Su-Min, ZHANG Chao-Yang, ZHONG Jun-Wei. Diaphanous mechanism and damage threshold of liquid crystal mask by nslaser penetration[J]. 吉林大学学报(工学版), 2010, 40(05): 1288 -1291 .
[8] Liu Xiao-xiao,Yao Jun,Ma Guang-sheng . Study on advancing timing characterization in VLSI circuits[J]. 吉林大学学报(工学版), 2007, 37(03): 621 -0624 .
[9] YAO Guo-feng,GAO Xue-fei . Controllability of structure with repeated eigenvalues[J]. 吉林大学学报(工学版), 2008, 38(06): 1359 -1365 .
[10] YU Fan-Hua, LIU Ren-Yun, ZHOU Chun-Guang. Structural damage detection based on residual force vector method and particle swarm algorithm[J]. 吉林大学学报(工学版), 2010, 40(增刊): 339 -0343 .