Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (10): 2964-2972.doi: 10.13229/j.cnki.jdxbgxb.20211335
Previous Articles Next Articles
Li-yan DONG1,2(),Wei-ye LIANG1,Yue-qun WANG1,Yong-li LI3
CLC Number:
1 | Wang S, Pasi G, Hu L, et al. The era of intelligent recommendation: editorial on intelligent recommendation with advanced AI and learning[J]. IEEE Intelligent Systems, 2020, 35(5): 3-6. |
2 | Sri Hari Nallamala, Nallamala Sri Hari, Bajjuri Usha Rani, et al. A brief analysis of collaborative and content based filtering algorithms used in recommender systems[J]. IOP Conference Series: Materials Science and Engineering, 2020, 981(2): No.022008. |
3 | Mahesh Mali, Mishra Dhirendra S, Vijayalaxmi M. Multifaceted recommender systems methods: a review[J]. Journal of Statistics and Management Systems, 2020, 23(2): 349-361. |
4 | Dang T K, Nguyen Q P, Nguyen V S. A study of deep learning-based approaches for session-based recommendation systems[J]. SN Computer Science, 2020, 1(4): 1-13. |
5 | Wang S, Cao L, Wang Y, et al. A survey on session-based recommender systems[J]. ACM Computing Surveys(CSUR), 2021, 54(7): 1-38. |
6 | Abdi Mohamed Hussein, Okeyo George Onyango, Mwangi Ronald Waweru. Matrix factorization techniques for context-aware collaborative filtering recommender systems: a survey[J]. Computer and Information Science, 2018, 11(2): 1-10. |
7 | Liu S, Wang L. A self-adaptive point-of-interest recommendation algorithm based on a multi-order Markov model[J]. Future Generation Computer Systems, 2018, 89(4): 506-514. |
8 | Rendle S, Freudenthaler C, Schmidt-Thieme L. Factorizing personalized markov chains for next-basket recommendation[C]∥Proceedings of the 19th International Conference on World Wide Web, New York,USA, 2010: 811-820. |
9 | Hidasi B, Karatzoglou A, Baltrunas L, et al. Sessionbased recommendations with recurrent neural networks[EB/OL]. [2021-11-12]. . |
10 | Li J, Ren P, Chen Z, et al. Neural attentive session-based recommendation[C]∥Proceedings of the ACM on Conference on Information and Knowledge Management, New York,USA, 2017: 1419-1428. |
11 | Vaswani Ashish, Shazeer Noam, Parmar Niki, et al. Attention is all you need[C]∥Proceedings of 31st Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 5998-6008. |
12 | Liu Q, Zeng Y, Mokhosi R, et al. STAMP: short-term attention/memory priority model for session-based recommendation[C]∥Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, United Kingdom, 2018: 1831-1839. |
13 | Jannach D, Ludewig M. When recurrent neural networks meet the neighborhood for session-based recommendation[C]∥Proceedings of the 11th ACM Conference on Recommender Systems, Como, Italy, 2017: 306-310. |
14 | Tuan T X, Phuong T M. 3D convolutional networks for session-based recommendation with content features[C]∥Proceedings of the 11th ACM Conference on Recommender Systems, Como, Italy, 2017: 138-146. |
15 | Wu C, Yan M. Session-aware information embedding for e-commerce product recommendation[C]∥Proceedings of the 2017 ACM on conference on information and knowledge management, Singapore, 2017: 2379-2382. |
16 | Tang J, Wang K. Personalized top-n sequential recommendation via convolutional sequence embedding[C]∥Proceedings of the 11th ACM International Conference on Web Search and Data Mining, Berkeley, USA, 2018: 565-573. |
17 | Yuan F, Karatzoglou A, Arapakis I, et al. A simple convolutional generative network for next item recommendation[C]∥Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, Melbourne, Australia, 2019: 582-590. |
18 | Xu Keyulu, Hu Wei-hua, Jure Leskovec, et al. How powerful are graph neural networks?[EB/OL]. [2021-11-12]. . |
19 | Wu S, Tang Y, Zhu Y, et al. Session-based recommendation with graph neural networks[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, Palo Alto, USA, 2019: 346-353. |
20 | Xu C, Zhao P, Liu Y, et al. Graph contextualized self-attention network for session-based recommendation[C]∥Proceedings of the 28th International Joint Conference on Artificial Intelligence, San Francisco, USA, 2019: 3940-3946. |
21 | Yu F, Zhu Y, Liu Q, et al. TAGNN: Target attentive graph neural networks for session-based recommendation[C]∥Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi'an, China, 2020: 1921-1924. |
22 | Qiu R, Li J, Huang Z, et al. Rethinking the item order in session-based recommendation with graph neural networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Atlanta,USA, 2019: 579-588. |
23 | Wang Z, Wei W, Cong G, et al. Global context enhanced graph neural networks for session-based recommendation[C]∥Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi'an, China, 2020: 169-178. |
24 | Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms[C]∥Proceedings of the 2001 International Conference on World Wide Web, Hong Kong, China, 2001:285-295. |
25 | Wu Z, Pan S, Chen F, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. |
[1] | Da-juan FAN,Zhi-qiu HUANG,Yan CAO. Adaptive access control method for SaaS privacy protection [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2897-2908. |
[2] | Man YUAN,Yun-long JIANG,Chao HU. A new method for link validity assessment based on linked data [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1792-1797. |
[3] | Shuai LYU,Jing LIU. Stochastic local search heuristic method based on deep reinforcement learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1420-1426. |
[4] | Rong QIAN,Ru ZHANG,Ke-jun ZHANG,Xin JIN,Shi-liang GE,Sheng JIANG. Capsule graph neural network based on global and local features fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1048-1054. |
[5] | Xiao-hui WEI,Bing-yi SUN,Jia-xu CUI. Recommending activity to users via deep graph neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 278-284. |
[6] | Man YUAN,Chao HU,Ting-ting QIU. A new method for data integrity assessment based on Linked data [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1826-1831. |
[7] | Lei LIU,Jie WENG,De-gui GUO. Static input determination method in partial evaluation for compiler test [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 262-267. |
[8] | MA Jian, FAN Jian-ping, LIU Feng, LI Hong-hui. The evolution model of objective-oriented software system [J]. 吉林大学学报(工学版), 2018, 48(2): 545-550. |
[9] | LUO Yang-xia, GUO Ye. Software recognition based on features of data dependency [J]. 吉林大学学报(工学版), 2017, 47(6): 1894-1902. |
[10] | YING Huan, WANG Dong-hui, WU Cheng-gang, WANG Zhe, TANG Bo-wen, LI Jian-jun. Efficient deterministic replay technique on commodity system environment [J]. 吉林大学学报(工学版), 2017, 47(1): 208-217. |
[11] | LI Yong, HUANG Zhi-qiu, WANG Yong, FANG Bing-wu. New approach of cross-project defect prediction based on multi-source data [J]. 吉林大学学报(工学版), 2016, 46(6): 2034-2041. |
[12] | WANG Nian-bin, ZHU Guan-wen, ZHOU Lian-ke, WANG Hong-wei. Novel dataspace index for efficient processing of path query [J]. 吉林大学学报(工学版), 2016, 46(3): 911-916. |
[13] | CHEN Peng-fei, TIAN Di, YANG Guang. Design and implementation of LIBS software based on MVC architecture [J]. 吉林大学学报(工学版), 2016, 46(1): 242-245. |
[14] | TE Ri-gen, JIANG Sheng, LI Xiong-fei, LI Jun. Document compression scheme based on integer data [J]. 吉林大学学报(工学版), 2016, 46(1): 228-234. |
[15] | FENG Xiao-ning, WANG Zhuo, ZHANG Xu. Formal method for routing protocol of WSN based on L-π calculus [J]. 吉林大学学报(工学版), 2015, 45(5): 1565-1571. |
|