Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (12): 3518-3528.doi: 10.13229/j.cnki.jdxbgxb.20220166
Jing-hong LIU1(),An-ping DENG1,2,Qi-qi CHEN1,2,Jia-qi PENG3,Yu-jia ZUO1
CLC Number:
1 | Guo Dong-yan, Wang Jun, Cui Ying, et al. SiamCAR: siamese fully convolutional classification and regression for visual tracking[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 6269-6277. |
2 | Baker S, Matthews I. Lucas-kanade 20 years on: a unifying framework[J]. International Journal of Computer Vision, 2004, 56(3): 221-255. |
3 | Collins R T. Mean-shift blob tracking through scale space[C]∥2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, 2003: No. II-234. |
4 | Henriques J F, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(3): 583-596. |
5 | Tao R, Gavves E, Smeulders A W M. Siamese instance search for tracking[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 1420-1429. |
6 | Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional siamese networks for object tracking[C]∥European Conference on Computer Vision, Germany, Cham, 2016: 850-865. |
7 | Li Bo, Yan Junjie, Wu Wei, et al. High performance visual tracking with siamese region proposal network[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 8971-8980. |
8 | Li Bo, Wu Wei, Wang Qiang, et al. Evolution of siamese visual tracking with very deep networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019: 16-20. |
9 | Zhu Zheng, Wang Qiang, Li Bo, et al. Distractor-aware siamese networks for visual object tracking[C]∥Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 101-117. |
10 | 王侃, 苏航, 曾浩, 等. 表观增强的深度目标跟踪算法[J]. 吉林大学学报: 工学版, 2022, 52(11): 2676-2684. |
Wang Kan, Su Hang, Zeng Hao, et al. Deep target tracking using augmented apparent information[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(11): 2676-2684. | |
11 | Roy A G, Navab N, Wachinger C. Concurrent spatial and channel' squeeze & excitation' in fully convolutional networks[C]∥International Conference on Medical Image Computing and Computer-assisted Intervention, Germany, Cham, 2018: 421-429. |
12 | Wang X L, Girshick R, Gupta A, et al. Non-local neural networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 7794-7803. |
13 | Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]∥Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 3-19. |
14 | He An-feng, Luo Chong, Tian Xin-mei, et al. A twofold siamese network for real-time object tracking[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 4834-4843. |
15 | Wang Qiang, Teng Zhu, Xing Jun-liang, et al. Learning attentions: residual attentional siamese network for high performance online visual tracking[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 4854-4863. |
16 | 才华, 王学伟, 付强, 等. 基于动态模板更新的孪生网络目标跟踪算法[J]. 吉林大学学报: 工学版, 2022, 52(5): 1106-1116. |
Cai Hua, Wang Xue-wei, Fu Qiang, et al. Siamese network target tracking algorithm based on dynamic template updating[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(5): 1106-1116. | |
17 | He Kai-ming, Zhang Xiang-yu, Ren Shao-qing, et al. Deep residual learning for image recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 770-778. |
18 | Howard A G, Zhu M L, Chen B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[J/OL]. [2022-02-01]. |
19 | Lin T Y, Maire M, Belongie S, et al. Microsoft coco: common objects in context[C]∥European Conference on Computer Vision, Cham,Germany, 2014: 740-755. |
20 | Huang Liang-hua, Zhao Xin, Huang Kai-qi. Got-10k: a large high-diversity benchmark for generic object tracking in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(5): 1562-1577. |
21 | Deng J, Dong W, Socher R, et al. Imagenet: a large-scale hierarchical image database[C]∥2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 2009: 248-255. |
22 | Wu Yi, Jongwoo Lim, Yang Ming-hsuan. Online object tracking: a benchmark[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, US, 2013: 2411-2418. |
[1] | Guang HUO,Da-wei LIN,Yuan-ning LIU,Xiao-dong ZHU,Meng YUAN,Di GAI. Lightweight iris segmentation model based on multiscale feature and attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2591-2600. |
[2] | Xiao-xin GUO,Jia-hui LI,Bao-liang ZHANG. Joint segmentation of optic cup and disc based on high resolution network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2350-2357. |
[3] | Fei-fei TANG,Hai-lian ZHOU,Tian-jun TANG,Hong-zhou ZHU,Yong WEN. Multi⁃step prediction method of landslide displacement based on fusion dynamic and static variables [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1833-1841. |
[4] | Yan-tao TIAN,Xing HUANG,Hui-qiu LU,Kai-ge WANG,Fu-qiang XU. Multi⁃mode behavior trajectory prediction of surrounding vehicle based on attention and depth interaction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1474-1480. |
[5] | Wei LYU,Jia-ze HAN,Jing-hui CHU,Pei-guang JING. Multi⁃modal self⁃attention network for video memorability prediction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1211-1219. |
[6] | Yan-tao TIAN,Fu-qiang XU,Kai-ge WANG,Zi-xu HAO. Expected trajectory prediction of vehicle considering surrounding vehicle information [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 674-681. |
[7] | Sheng JIANG,Peng-lang WANG,Zhi-ji DENG,Yi-ming BIE. Image fusion algorithm for traffic accident rescue based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3472-3480. |
[8] | You QU,Wen-hui LI. Multiple object tracking method based on multi-task joint learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2932-2941. |
[9] | Ji-hong OUYANG,Ze-qi GUO,Si-guang LIU. Dual⁃branch hybrid attention decision net for diabetic retinopathy classification [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 648-656. |
[10] | Xian-tong LI,Wei QUAN,Hua WANG,Peng-cheng SUN,Peng-jin AN,Yong-xing MAN. Route travel time prediction on deep learning model through spatiotemporal features [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 557-563. |
[11] | Xiao⁃lei CHEN,Yong⁃feng SUN,Ce LI,Dong⁃mei LIN. Stable anti⁃noise fault diagnosis of rolling bearing based on CNN⁃BiLSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 296-309. |
[12] | Kan WANG,Hang SU,Hao ZENG,Jian QIN. Deep target tracking using augmented apparent information [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2676-2684. |
[13] | Da-ke ZHOU,Chao ZHANG,Xin YANG. Self-supervised 3D face reconstruction based on multi-scale feature fusion and dual attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2428-2437. |
[14] | Jie CAO,Xue QU,Xiao-xu LI. Few⁃shot image classification method based on sliding feature vectors [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1785-1791. |
[15] | De-xing WANG,Ruo-you WU,Hong-chun YUAN,Peng GONG,Yue WANG. Underwater image restoration based on multi-scale attention fusion and convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1396-1404. |
|