Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (12): 3558-3567.doi: 10.13229/j.cnki.jdxbgxb.20230076

Previous Articles     Next Articles

TDOA⁃AOA location based on improved african vulture algorithm

Jian XIAO1(),Jing-wei LIU1,Xin HU2(),Xiao-gang QI3   

  1. 1.School of Electronic and Control Engineering,Chang'an University,Xi'an 710054,China
    2.School of Energy and Electrical Engineering,Chang'an University,Xi' an 710054 China
    3.School of Mathematics and Statistics Engineering,Xidian University,Xi' an 710054,China
  • Received:2023-01-29 Online:2024-12-01 Published:2025-01-24
  • Contact: Xin HU E-mail:xiaojian@chd.edu.cn;huxin@chd.edu.cn

Abstract:

For joint localization of time difference of arrival (TDOA) and angle of arrival (AOA), an improved African vulture localization algorithm based on quasi reflective learning mechanism and parallel mechanism was proposed. The improved African vulture introduced a quasi reflection mechanism to enrich population diversity and speed up convergence in the process of searching for the maximum likelihood fitness function of the location model and in the iterative process, which also balanced the exploration and exploitation capabilities to a certain extent; The parallel mechanism was introduced to guide another population through the optimal individual of one population, which speeds up the convergence speed and enhances the optimization performance. From the results, the improved African Vulture algorithm is compared with AVOA, IHHO, CSSOA, PIO and CASSA, and shows faster convergence speed, more accurate positioning accuracy and better stability in solving the benchmark function and positioning model.

Key words: information processing technology, time difference of arrival, angle of arrival, african vultures optimization algorithm, quasi reflection

CLC Number: 

  • TP277

Fig.1

Positioning Model Of TDOA/AOA"

Fig.2

Flowchart of PQRAVOA"

Table 1

Benchmark Functions"

FunctionsDRangefmin
F1=i=1nxi2

100

[-100,100]D

0

F2=i=1nxi-i=1nxi

100

[-10,10]D

0

F3=i=1n(j=1ixj)2

30

[-100,100]D

0

F4=maxi{xi,1in}30[-100,100]D0
F5=-20e(-0.21ni=1nxi2)????????-e(1ni=1ncos(2πxi)+20+e

10

[-32,32]D

0

F6=0.1{sin2(3πxi)?????????+i=1n-1(xi-1)[1+sin2(3πxi+1)]?????????+(xn-1)[1+sin2(2πxn)]}??????????+i=1nu(xi,5,100,4)

100

[-50,50]D

0

Fig.3

Comparison of convergence curves of benchmark functions"

Table 2

Results of benchmark functions"

函数PQRAVOAAVOAIHHOCSSOAPIOCASSA
F1Ave07.763E-12002.556E-2286.673E-122.624E-13
Std01.731E-119001.481E-114.465E-13
F2Ave2.074E-2172.641E-604.058E-1878.177E-1061.479E-88.448E-6
Std05.813E-6001.698E-1052.196E-81.842E-5
F3Ave02.218E-761.937E-2841.039E-1652.045E-129.342E-9
Std04.202E-76002.132E-122.089E-8
F4Ave1.915E-2123.967E-601.953E-1621.309E-1116.588E-75.463E-10
Std08.385E-604.445E-1621.511E-1111.369E-75.712E-10
F5Ave3.801E-91.522E-38.922E-37.711E-57.20213.606
Std3.778E-91.191E-31.429E-28.332E-58.22810.969
F6Ave1.113E-114.541E-84.718E-57.469E-99.601E-32.232E-2
Std1.003E-112.134E-84.652E-51.671E-81.285E-23.323E-2

Fig.4

Relationship between fitness and iteration"

Fig.5

Relationship between RMSE and iteration"

Fig.6

Relationship between RMSE and Population quantity"

Fig.7

CDF curve of RMSE under different distance noise"

Table 3

Comparison of root mean square error under different distance noise standard deviation"

σ(m)RMSE
AVOAPQRAVOACSSOAIHHOCASSAPIO
0.10.040 50.011 90.016 30.066 20.235 30.029 3
0.20.058 70.022 60.025 80.079 20.241 90.042 8
0.30.073 10.035 10.036 90.085 80.247 20.061 6
0.40.083 60.046 70.049 20.093 90.248 30.075 5
0.50.092 20.055 10.061 20.108 70.284 80.092 9
0.60.100 40.064 20.073 20.113 40.299 30.103 4
0.70.111 10.076 50.080 60.123 10.275 40.114 1
0.80.119 10.088 80.097 20.138 50.305 90.127 1
0.90.124 20.099 20.103 50.147 60.301 10.131 7
1.00.131 90.108 50.117 80.158 20.288 10.148 9
1 Wang G, Zhu W, Ansari N. Robust TDOA-based localization for IoT via joint source position and NLOS error estimation[J]. IEEE Internet of Things Journal, 2019, 6(5): 8529-8541.
2 Wang Y, Ho K C. An asymptotically efficient estimator in closed-form for 3-D AOA localization using a sensor network[J]. IEEE Transactions on Wireless Communications, 2015, 14(12): 6524-6535.
3 Wang Y, Ho K C. Unified near-field and far-field localization for AOA and hybrid AOA-TDOA positionings[J]. IEEE Transactions on Wireless Communications, 2017, 17(2): 1242-1254.
4 岳俊升, 程钢, 邓超. 标签高度差的UWB室内定位方法[J]. 导航定位学报, 2019, 7(3): 44-50.
Yue Jun-sheng, Cheng Gang, Deng Chao. UWB indoor positioning method considering difference ofheight[J]. Journal of Navigation and Positioning,2019, 7(3): 44-50.
5 孔维炯, 丁志中, 方福柱. 基于TDOA的高精度无线定位算法分析与实现[J]. 合肥工业大学学报: 自然科学版, 2019, 42(6): 756-762.
Kong Wei-jiong, Ding Zhi-zhong, Fang Fu-zhu. Analisys and realization of high precision radio positioning algorithm based on TDOA[J]. Journal of Hefei University of Technology (Natural Science), 2019,42(6): 756-762.
6 Wang G, Cai S, Li Y M, et al. A bias reduced nonlinear WLS method for TDOA /FDOA based source localization[J]. IEEE Transactions on Vehicular Technology, 2016,65 (10): 8603-8615.
7 赵拥军, 赵勇胜, 赵闯. 基于正则化约束总体最小二乘的单站DOA-TDOA 无源定位算法[J]. 电子与信息学报, 2016, 38(9): 2336-2343.
Zhao Yong-jun, Zhao Yong-sheng, Zhao Chuang. Single-observer passive DOA-TDOA location based on regularized constrained total least squares[J]. Journal of Electronics & Information Technology,2016,38 (9): 2336-2343.
8 马一鸣, 石志东, 赵康.基于改进哈里斯鹰优化算法的TDOA 定位[J].计算机工程, 2020, 46(12): 179-184.
Ma Yi-ming, Shi Zhi-dong, Zhao Kang. TDOA localization based on improved Harris hawk optimization algorithm[J]. Computer Engineering,2020,46(12):179-184.
9 国强, 朱国会, 李万臣. 基于混沌麻雀搜索算法的TDOA/FDOA定位[J]. 吉林大学学报: 工学版,2023, 53(2): 593-600.
Guo Qiang, Zhu Guo-hui, Li Wan-chen. TDOA/FDOA localization based on chaotic sparrow search algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(2): 593-600.
10 陈涛, 王梦馨, 黄湘松. 基于樽海鞘群算法的无源时差定位[J]. 电子与信息学报, 2018, 40(7): 1591-1597.
Chen Tao, Wang Meng-xin, Huang Xiang-song. Time difference of arrival passive location based on salp swarm algorithm[J]. Journal of Electronics & Information Technology, 2018, 40(7): 1591-1597.
11 苟平章, 孙梦源, 刘学治,等. 基于天牛须搜索优化的TDOA三维节点定位算法[J].传感器与微系统,2022, 41(10): 141-144.
Gou Ping-zhang, Sun Meng-yuan, Liu Xue-zhi, et al. 3D node location algorithm based on optimization of BAS [J]. Transducer and Microsystem Technologies,2022, 41(10): 141-144.
12 Mirjalili S, Lewis A. The whale optimization algorithm[J]. Advances in Engineering Software,2016,95: 51-67.
13 Sm A, Smm B, Al A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
14 Abbasi A, Firouzi B, Sendur P. On the application of Harris hawks optimization (HHO) algorithm to the design of microchannel heat sinks[J]. Engineering with Computers, 2021, 37(2): 1409-1428.
15 Nadimi-Shahraki M H, Taghian S, Mirjalili S,et al. EWOA-OPF: effective whale optimization algorithm to solve optimal power flow problem[J]. Electronics, 2021, 10(23): No.10232975.
16 Nadimi-Shahraki M H, Taghian S, Mirjalili S. An improved grey wolf optimizer for solving engineering problems[J]. Expert Systems with Applications, 2021, 166: No. 113917.
17 Fan Q, Chen Z, Xia Z. A novel quasi-reflected Harris hawks optimization algorithm for global optimization problems[J]. Soft Computing, 2020,24(19): 14825-14843.
18 王静静, 瞿少成, 李科林. 一种基于并行交叉遗传算法的二维不规则排样问题求解[J]. 计算机应用与软件, 2020, 37(7): 188-193.
Wang Jing-jing, Zhai Shao-cheng, Li Ke-lin. A two-dimensional irregular layout problem solving based on parallel cross genetic algorithm[J]. Computer Applications and Software, 2020, 37(7): 188-193.
19 Abdollahzadeh B, Gharehchopogh F S, Mirjalili S. African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems[J]. Computers & Industrial Engineering, 2021, 158: No.107408.
20 Tizhoosh H R. Opposition-based learning: a new scheme for machine intelligence[C]∥International Conference on International Conference on Computational Intelligence for Modelling, Control & Automation, Vienna, Austria, 2005: 695-701.
21 Rahnamayan S, Tizhoosh H R, Salama M. Quasi-oppositional differential evolution[C]∥2007 IEEE Congress on Evolutionary Computation, Piscataway,USA, 2007: 2229-2236.
22 Ewees A A, Elaziz M A, Houssein E H. Improved grasshopper optimization algorithm using opposition-based learning[J]. Expert Systems with Applications,2018,112(Dec.): 156-172.
23 Pan J S, Tian A Q, Chu S C,et al. TDOA location based on pigeon-inspired optimization algorithm in WSNs[C]∥International Conference on Genetic and Evolutionary Computing.Berlin: Springer, 2021: 724-733.
24 张达敏, 陈忠云, 辛梓芸. 基于疯狂自适应的樽海鞘群算法[J]. 控制与决策, 2020, 35(9): 2112-2120.
Zhang Da-min, Chen Zhong-yun, Xin Zi-yun. Algorithm based on crazy self-adaptive salvia group[J]. Control and Decision, 2020, 35(9): 2112-2120.
[1] Jin DUAN,An-ni YAO,Zhen WANG,Lin-tao YU. Improved sparrow search algorithm optimizes coverage in wireless sensor networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 761-770.
[2] Yu-ting SU,Ji WANG,Wei ZHAO,Pei-guang JING. Dynamic graph convolutional neural network for image sentiment distribution prediction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2601-2610.
[3] Mian-shu CHEN,Lu-lu YU,Xiao-ni LI,Hong-yu ZHENG. Loop detection based on uniform ORB [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2666-2675.
[4] Qiang GUO,Guo-hui ZHU,Wan-chen LI. TDOA/FDOA localization based on chaotic sparrow search algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 593-600.
[5] Hou⁃jie LI,Fa⁃sheng WANG,Jian⁃jun HE,Yu ZHOU,Wei LI,Yu⁃xuan DOU. Pseudo sample regularization Faster R⁃CNN for traffic sign detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1251-1260.
[6] Hua-wei JIANG,Zhen YANG,Xin ZHANG,Qian-lin DONG. Research progress of image dehazing algorithms [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1169-1181.
[7] De-xing WANG,Ruo-you WU,Hong-chun YUAN,Peng GONG,Yue WANG. Underwater image restoration based on multi-scale attention fusion and convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1396-1404.
[8] Jing JIN,Jian-wu DANG,Yang-ping WANG,Dong SHEN. Multi⁃cue particle filter tracking based on fuzzy statistical texture features [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1111-1120.
[9] Guo-hua LIU,Wen-bin ZHOU. Pulse wave signal classification algorithm based on time⁃frequency domain feature aliasing using convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1818-1825.
[10] Ke-yan WANG,Di WANG,Xi ZHAO,Jing-yi CHEN,Yun-song LI. Image dehazing based on joint estimation via convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1771-1777.
[11] Zai-feng SHI,Jin-zhuo LI,Qing-jie CAO,Hui-long LI,Qi-xing HU. Low⁃dose spectral computer⁃tomography imaging denoising method via a generative adversarial network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1755-1764.
[12] Hua CHEN,Wei GUO,Jing-wen YAN,Wen-hao ZHUO,Liang-bin WU. A new deep learning method for roads recognition from SAR images [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1778-1787.
[13] Wei ZHANG,Yong HAN,Ming JIN,Xiao-lin QIAO. Toeplitz matrices reconstruction based DOA estimation for coherent signals [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 703-710.
[14] Yan-fen CHENG,Li-juan YAO,Qiao YUAN,Xian-qiao CHEN. Clearing strategy of underwater video image [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 668-677.
[15] Xiao-hui YU,Zhi-cheng ZHANG,Xin-bo LI,Xiao-dong SUN. Parameter estimation of exponentially damped sinusoidsbased on state⁃space model [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 2083-2088.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .