Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (5): 1258-1266.doi: 10.13229/j.cnki.jdxbgxb.20221156

Previous Articles    

Meso-cracking behavior of cement-stabilized macadam materials based on heterogeneous model

Xiao-kang ZHAO(),Zhe HU,Zhen-xing NIU,Jiu-peng ZHANG(),Jian-zhong PEI,Yong WEN   

  1. School of Highway,Chang'an University,Xi'an 710064,China
  • Received:2022-09-07 Online:2024-05-01 Published:2024-06-11
  • Contact: Jiu-peng ZHANG E-mail:zhaoxk@chd.edu.cn;zhjiupeng@chd.edu.cn

Abstract:

The purpose is to investigate the mesoscopic cracking behavior of heterogeneous cement-stabilized macadam (CSM) materials using the discrete element method (DEM). According to Weibull distribution material random field, the heterogeneous fracture models with different homogenization levels were established. The virtual semicircular bending (SCB) tests were carried out to simulate the mesoscopic cracking process. The influence of mortar heterogeneity on mesoscopic cracking behavior of CSM was further studied. The results show that the CSM cracks tend to propagate along the weak mortar and the interfacial transition zone, and the fracture of mortar matrix was dominant. The peak strength and failure deformation of CSM material increase with the increase of mortar homogeneity. A small amount of weak mortar matrix is beneficial to improve the structure deformation characteristics and enhance its overall strength. The optimum crack resistance of CSM materials can be obtained by maintaining reasonable homogenization levels of mortar matrix.

Key words: road engineering, cement-stabilized macadam, mesoscopic heterogeneity, semicircle bending test, discrete element method

CLC Number: 

  • U416.214

Fig.1

Mesoscopic model preparation processing"

Fig.2

Particle size distribution of virtual specimen"

Table 1

Material parameters in the DEM model"

细观参数集料内部砂浆内部ITZ集料之间
有效模量 E/Pa55.5e90.17e80.12e855.5e9
刚度比 k5.01.11.15.0
抗拉强度 σ/Pa2.4e70.63e60.42e60
粘结强度 c/Pa2.4e71.26e60.84e60

Fig.3

Relation curve between E(X) and D(X) and homogeneity coefficient α"

Fig.4

Model parameter distribution of the material random field"

Fig.5

SCB loading mode"

Fig.6

Model validation results"

Fig.7

Load-displacement curves of heterogeneous models (α=5)"

Fig.8

Evolution of force chains at different cracking stages"

Fig.9

Meso-cracking evolution"

Fig.10

SCB simulation results of different heterogeneous models"

Fig.11

Number of failed bonds of different heterogeneous models"

1 Chen X Q, Yuan J W, Dong Q, et al. Meso-scale cracking behavior of cement treated base material[J]. Construction and Building Materials, 2020, 239: 117823.
2 张阳, 王傲鹏, 张靖霖, 等. 水泥稳定碎石材料干燥收缩研究综述 [J]. 吉林大学学报:工学版, 2023, 53(2): 297-311.
Zhang Yang, Wang Ao-peng, Zhang Jing-lin, et al. Dry shrinkage in cement⁃stabilized macadam: a review [J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(2): 297-311.
3 赵晓康, 董侨, 陈雪琴, 等. 考虑初始缺陷的水泥基复合材料细观开裂研究 [J]. 中国公路学报, 2020, 33(10): 230-239.
Zhao Xiao-kang, Dong Qiao, Chen Xue-qin, et al. Mesoscale cracking of cement-treated composites with initial defects[J]. China Journal of Highway and Transport, 2020, 33(10): 230-239.
4 Dong Q, Zhao X K, Chen X Q, et al. Long-term mechanical properties of in situ semi-rigid base materials[J]. Road Materials and Pavement Design, 2021, 22(7): 1692-1707.
5 周正峰, 康玉峰, 罗君豪, 等. 基于黏聚区模型的混凝土细观断裂分析[J]. 东南大学学报:自然科学版, 2021, 51(2): 270-277.
Zhou Zheng-feng, Kang Yu-feng, Luo Jun-hao, et al. Mesoscale fracture analysis on concrete based on cohesive zone model[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(2): 270-277.
6 彭勇, 章秀芳, 郭泽宇, 等. 离散元法分析集料接触特性对沥青混合料剪切疲劳寿命的影响[J]. 吉林大学学报:工学版, 2023, 53(1): 178-187.
Peng Yong, Zhang Xiu-fang, Guo Ze-yu, et al. Influence of aggregate contact characteristics on shear fatigue life of asphalt mixtures using discrete element method[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(1): 178-187.
7 Zhang L F, Xie H, Feng J L. Mesoscale modeling and failure mechanism of concrete considering pore structures and actual aggregate shapes[J]. Construction and Building Materials, 2022, 353: 129133.
8 Shen Z H, Huang D R, Wang G, et al. A mesoscale bond model for discrete element modeling of irregular cemented granular materials[J]. Computers and Geotechnics, 2022, 152: 105051.
9 李崛, 张安顺, 张军辉, 等. 级配碎石基层结构动力响应模型测试及数值分析[J]. 吉林大学学报:工学版, 2023, 53(6): 1782-1789.
Li Jue, Zhang An-shun, Zhang Jun-hui, et al. Model testing and numerical analysis of dynamic response of graded crushed rock base structure[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(6): 1782-1789.
10 Su X T, Yang Z J, Liu G H. Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials: a 3D study[J]. International Journal of Solids and Structures, 2010, 47(17): 2336-2345.
11 唐欣薇. 基于宏细观力学的混凝土破损行为研究[D]. 北京: 清华大学土木水利学院, 2009.
Tang Xin-wei. Study on damage and fracture behavior of concrete based on macro and meso mechanics[D]. Beijing: School of Civil and Hydraulic Engineering, Tsinghua University, 2009.
12 王正鑫. 基于颗粒流离散元法的混凝土冻融损伤单轴试验模拟 [D]. 西安: 西安理工大学水利水电学院, 2018.
Wang Zheng-xin. Uniaxial test simulation of concrete freeze-thaw damage based on particle flow discrete element method[D]. Xi'an: School of Water Resources and Hydropower, Xi'an University of Technology, 2018.
13 Zhao X K, Dong Q, Yuan J W, et al. Micro-scale characterization of the heterogeneous properties of in-service cement-treated base material[J]. Construction and Building Materials, 2020, 264: No.120696.
[1] Tong-tong WAN,Hai-nian WANG,Wen-hua ZHENG,Po-nan FENG,Yu CHEN,Chen ZHANG. Thermal contraction deformation behavior of asphalt mixture overlay with coordination of unbound aggregate layer [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1045-1057.
[2] Jun CHEN,Zhen-hao SUN,Cheng ZHAO,Xin-yi WU,Jun-peng WANG. Laboratory investigation on cooling effect of multi-layer phase change asphalt concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 180-187.
[3] Nai-peng TANG,Chen-yang XUE,Shao-peng LIU,Hong-zhou ZHU,Rui LI. Review on aging mechanism, characterization and evaluation of crumb rubber modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 22-43.
[4] Zhuang WANG,Zhen-gang FENG,Dong-dong YAO,Qi CUI,Ruo-ting SHEN,Xin-jun LI. Research progress of conductive asphalt concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 1-21.
[5] Sheng-qian ZHAO,Zhuo-hong CONG,Qing-long YOU,Yuan LI. Adhesion and raveling property between asphalt and aggregate: a review [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2437-2464.
[6] Tao MA,Yuan MA,Xiao-ming HUANG. Optimal combination of key parameters of intelligent compaction based on multiple nonlinear regression [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2067-2077.
[7] Liu YANG,Chuang-ye WANG,Meng-yan WANG,Yang CHENG. Traffic flow characteristics of six⁃lane freeways with a dedicated lane for automatic cars [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2043-2052.
[8] Zheng-feng ZHOU,Xiao-tao YU,Ya-le TAO,Mao ZHENG,Chuan-qi YAN. High-temperature performance evaluation of resin and elastomer high viscosity asphalt based on grey correlation analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2078-2088.
[9] Qing-xia ZHANG,Ji-lin HOU,Xin-hao AN,Xiao-yang HU,Zhong-dong DUAN. Road roughness identification method based on vehicle impulse response [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1765-1772.
[10] Ping JIANG,Ye-wen CHEN,Xian-hua CHEN,Wei-qing ZHANG,Na LI,Wei WANG. Unconfined compression behavior of modified lime stabilized soil under dry wet and freeze⁃thaw cycles [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1809-1818.
[11] Chun-di SI,Ya-ning CUI,Zhong-yin XU,Tao-tao FAN. Meso⁃mechanical behavior analysis of asphalt bridge deck pavement after interlayer bonding failure [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1719-1728.
[12] Yan LI,Jiu-peng ZHANG,Zi-xuan CHEN,Guo-jing HUANG,Pei WANG. Evaluation of asphalt pavement performance based on PCA⁃PSO⁃SVM [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1729-1735.
[13] Zhuang-zhuang LIU,Wen-qing ZHENG,Jian ZHENG,Yi-zheng LI,Peng-yu JI,Ai-min SHA. Pavement surface temperature monitoring method based on gridding approach [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1746-1755.
[14] Xiao-kang ZHAO,Zhe HU,Jiu-peng ZHANG,Jian-zhong PEI,Ning SHI. Research progress in intelligent monitoring of pavement icing based on optical fiber sensing technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1566-1579.
[15] Bing HUI,Xin-yi YANG,Le-yang ZHANG,Yang LI. Influence of detecting track offset on calculation error of asphalt pavement wearing [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1756-1764.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!