Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (7): 1887-1893.doi: 10.13229/j.cnki.jdxbgxb.20221323

Previous Articles    

Simulation on influence of temperature field on composite glued structure of car interior

Yi LI1(),Ya-sai BAI1,Ji-cai LIANG1,2,Wei-guo YAO1,Ce LIANG1()   

  1. 1.College of Materials Science and Engineering,Jilin University,Changchun 130022,China
    2.Roll Forging Institute,Jilin University,Changchun 130022,China
  • Received:2022-10-10 Online:2024-07-01 Published:2024-08-05
  • Contact: Ce LIANG E-mail:henrylee@jlu.edu.cn;liangce@jlu.edu.cn

Abstract:

In this paper, the influence of surface temperature on the strength of contact surface is investigated based on the influence of displacement on the quality of overmolded products by simulation software. In the process of research, the model is coupled with temperature and displacement, the loading mode is unchanged, and the temperature and loading displacement are changed. Through comparison, it is found that the simulation results of different displacements have similar characteristics under the same temperature difference. The decrease of temperature will accelerate the damage and failure of adhesive layer, and the value of failure load will increase; Increasing temperature will promote the initial damage of adhesive layer, but delay the failure of adhesive layer and reduce the value of failure load. The increase and decrease of temperature will cause the change of stress, and the change trend is gradually increasing from inside to outside. The peeling force is provided by displacement load and stress in the loading process.

Key words: automobile interior trim, cohesive zone model (CZM), temperature pattern

CLC Number: 

  • TG356

Fig.1

Local 3D model of dashboard"

Table 1

Material parameters of upper and lower layers"

材料密度/(kg·mm-3弹性模量/MPa泊松比热导率/[mW·(mm·K)-1热膨胀系数/[m·(m·K)-1比热容/[kJ·(kg·K)-1
PU皮5.58E-830570.450.0341.8E-81.38E3
3D?mesh网格布9E-840000.30.045.94E-51.1E6

Table 2

Material parameters of adhesive layer"

性能

密度

/(kg·mm-3

杨氏模量

/MPa

断裂能

/(mJ·mm-2

剪切模量

/MPa

热导率

/[mW·(mm·K)-1

热膨胀系数

/[m·(m·K)-1

比热容

/[kJ·(kg·K)-1

数值1.45E-618504305600.2348.5E-55.5E5

Fig.2

Schematic diagram of grid"

Fig.3

Displacement direction and boundary setting"

Fig.4

Bilinear cohesion model"

Fig.5

Three groups of load-displacement curves under different temperature changes"

Fig.6

Initial stress and final stress at 30 ℃ with 0.5 mm displacement"

Fig.7

Curves of three groups of SDEG and QUADSCRT with time under different temperature changes"

Fig.8

Final stress diagram of three groups of models"

1 蒋志军, 张志刚, 吕崇建,等. 汽车内饰包覆零件设计与工艺研究[J]. 汽车实用技术, 2018,44(7):131-134.
Jiang Zhi-jun, Zhang Zhi-gang, Chong-jian Lyu. Research on the design and process of automotive interior coating parts[J]. Automobile Applied Technology,2018,44(7):131-134.
2 Hu P, Han X, Li W D, et al. Research on the static strength performance of adhesive single lap joints subjected to extreme temperature environment for automotive industry[J]. International Journal of Adhesion & Adhesives, 2013, 41:119-126.
3 Sayman O, Arikan V, Dogan A, et al. Failure analysis of adhesively bonded composite joints under transverse impact and different temperatures[J]. Composites Part B: Engineering, 2013, 54(11):409-414.
4 Vaidya U K, Gautam A, Hosur M, et al. Experimental-numerical studies of transverse impact response of adhesively bonded lap joints in composite structures[J]. International Journal of Adhesion & Adhesives, 2006, 26(3):184-198.
5 Huang W, Sun L, Li L, et al. Investigations on low-energy impact and post-impact fatigue of adhesively bonded single-lap joints using composites substrates[J]. The Journal of Adhesion, 2019:1-29.
6 Oz De Mir O, Oztoprak N. An investigation into the effects of fabric reinforcements in the bonding surface on failure response and transverse impact behavior of adhesively bonded dissimilar joints[J]. Composites Part B: Engineering, 2017, 126(10):72-80.
7 Machado J, Marques E, Lucas F M, et al. The journal of adhesion adhesives and adhesive joints under impact loadings: an overview[J] .The Journal of Adhesion,2018,94(5/7):421-452 .
8 Soykok I F, Sayman O, Ozen M, et al. Failure analysis of mechanically fastened glass fiber/epoxy composite joints under thermal effects[J]. Composites Part B: Engineering, 2013, 45(1):192-199.
9 Kemiklioglu U, Sayman O, Batar T.Strength comparison of ductile and brittle adhesives under single and repeated impacts[J]. Applied Adhesion Science, 2015, 3(1):1-9.
10 Kumagai S, Shindo Y. Experimental and analytical evaluation of the notched tensile fracture of CFRP-woven laminates at low temperatures[J]. Journal of Composite Materials, 2004, 38(13):1151-1164.
11 Shindo Y, Takahashi S, Takeda T, et al. Mixed-mode interlaminar fracture and damage characterization in woven fabric-reinforced glass/epoxy composite laminates at cryogenic temperatures using the finite element and improved test methods[J]. Engineering Fracture Mechanics, 2008, 75(18):5101-5112.
12 Tserpes K I, Labeas G, Papanikos P, et al. Strength prediction of bolted joints in graphite/epoxy composite laminates[J]. Composites Part B: Engineering, 2002, 33(7):521-529.
13 Mi Y, Crisfield M A, Davies G A O, et al. Progressive delamination using interface elements[J]. Journal of Composite Matrerials, 1998, 32(14):1246-1272.
14 徐庚. 基于率相关粘接界面模型的夹芯复合材料结构极限强度研究[D]. 武汉:武汉理工大学交通与物流工程学院, 2018.
Xu Geng. Study of ultimate strength of sandwich composite structures based on rate dependence adhesive interface model[D]. Wuhan: School of Transportation and Logistics Engineering, Wuhan University of Technology, 2018.
15 Benzeggagh M L, Kenane M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology, 1996, 56(4):439-449.
16 欧阳林辉. 温度环境对复合材料力学性能影响研究[D]. 西安: 西北工业大学力学与土木建筑学院, 2016.
Ouyang Lin-hui. Effect analysis of temperature environment on composite structure mechanical properites[D]. Xi´an: School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University,2016.
17 田宇. SiCp/AlSi3复合材料热残余应力有限元分析[D]. 长春: 吉林大学物理学院, 2009.
Tian Yu. Finite element analysis of SiCp/AlSi3 composite thermal residual stress[D]. Chanchun: College of Physics, Jilin University, 2009.
[1] Yi LI,Chen-yang LYU,Ji-cai LIANG,Ce LIANG. Section deformation analysis of irregular Y-shaped aluminum profile of multi-point stretch-bending process [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 105-113.
[2] Ce LIANG,Fu-lei HUANG,Ji-cai LIANG,Yi LI. Numerical simulation on deformation of protective beam with “日”-shaped section during rotary draw bending [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3397-3403.
[3] Wen-ming JIN,Tian LIANG,Ce LIANG,Yi LI,Jun-tao LI,Ji-cai LIANG. Influence of process parameters on cross-sectional deformation of rotary draw bending forming of automobile protective beams [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1182-1189.
[4] Ji-cai LIANG,Yan-fei LIAO,Fei TENG,Ce LIANG,Yi LI. Rectangular section profile thinning rate of three-dimensional multi-point stretch bending process [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 163-171.
[5] LIANG Ji-cai, LI Yi, GAO Song, TENG Fei. Springback prediction for multi-point 3D stretch bending profile [J]. 吉林大学学报(工学版), 2017, 47(1): 185-190.
[6] LI Yi, LIANG Ji-cai, TENG Fei, LIANG Ce, YU Jia-qi. Multi-phase iterative compensation method of die shape optimization for multi-point stretch bending profile [J]. 吉林大学学报(工学版), 2016, 46(6): 1961-1966.
[7] XU Zhi-xing, JIANG Xi-cheng, TANG Ke-hong, WEI Fu-yu. Research & Application of a New Water-Sealed Copper Line Annealing Furnace [J]. 吉林大学学报(工学版), 2000, (3): 39-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!