Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (7): 1988-1996.doi: 10.13229/j.cnki.jdxbgxb.20221191

Previous Articles    

Analysis on crack propagation of asphalt bridge deck pavement under water-force coupling action

Ya-ning CUI1,2,3(),Chun-di SI1,2,3(),Tao-tao FAN3,Fei WANG3   

  1. 1.State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
    2.Key Laboratory of Traffic Safety and Control of Hebei Province,Shijiazhuang 050043,China
    3.School of Traffic and Transportation,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
  • Received:2022-09-14 Online:2024-07-01 Published:2024-08-05
  • Contact: Chun-di SI E-mail:cuiyaning@stdu.edu.cn;sichundi@stdu.edu.cn

Abstract:

Cracks in pavement layer of asphalt mixture bridge deck will further cause looseness, pit and other diseases under water-load action. In order to reveal the influence of pore water pressure on the expansion of existing cracks under load, this paper established a finite element model of pavement layer of asphalt concrete continuous box girder bridge deck, and verified the correctness of the finite element model by field dynamic load test, taking dynamic deflection and modal of bridge as indexes. Then, longitudinal cracks are preset at the bottom of the upper layer of the deck paving layer, and the propagation effects of existing cracks on the deck paving layer under water-load coupling are studied by analyzing the variation of stress intensity factor KI and KII at the crack tip. It is found that the change of stress intensity factor (KI) reflects that the action of water pressure can promote the expansion of tensile cracks in pavement layer. The presence of water leads to the increase of KI value by about 50%, and the larger the hydrodynamic pressure is, the faster the expansion rate is. The hydrodynamic pressure has little effect on the expansion of shear cracks, and the stress intensity factor (KII) has little change. However, due to the presence of water, the response time of stress intensity factor becomes longer, so the water will have a continuous impact on the bridge deck paving layer.

Key words: road engineering, bridge deck pavement layer, crack propagation, water-load coupling, stress intensity factor

CLC Number: 

  • U414

Fig.1

Stress diagram of crack tip"

Fig.2

Stress diagram of crack tip"

Fig.3

3D model diagram"

Table 1

Material parameters of bridge deck pavement"

结构层厚度/cm模量/MPa泊松比密度/(kg·m-3
ARHM-13411 5000.352550
ARHM-20890000.352521
C5034 5000.37800

Fig.4

Cross-section of model"

Fig.5

Schematic diagram of dimensions of single-piece box girder"

Fig.6

Schematic diagram of symmetric load"

Fig.7

Mesh model of fracture area"

Fig.8

Schematic diagram of equivalent rectangular load"

Fig.9

Layout of measuring points"

Table 2

Parameters of the vehicle"

参数数值参数数值
车身长度8.675 m轴距4.050+1.350 m
车身高度3.6 m前轮距1.950 m
车身宽度2.55 m后轮距1.878 m
货厢长度5.6 m整车质量12.5 t
货厢高度1.5 m额定质量12.37 t
货厢宽度2.35 m总质量25 t
车头高度1.75 m轮胎规格12.00R20
青岛解放 JH6自卸式重卡(三轴)
车辆实际称重质量:50 510 kg

Fig.10

Field test diagram"

Fig.11

Mid-span displacement at different vehicle speeds"

Fig.12

Simulated vertical displacements at various speeds"

Table 3

Comparative analysis of dynamic deflection results"

车速/(km·h-1现场试验/mm数值仿真/mm误差/%
200.9471.005.6
301.1541.2246.07
400.9741.0336.06
501.1151.0089.60

Fig.13

The first three modes of field test"

Fig.14

First 3 modes of finite element simulation"

Table 4

Comparative analysis of modal results"

模态阶数实测模态/Hz仿真模态/Hz误差/%
1阶3.2243.2480.73
2阶3.7683.7820.37
3阶6.0095.8013.45

Fig.15

Crack stress intensity factor KI under traffic load"

Fig.16

Crack stress intensity factor KII under traffic load"

Fig.17

Crack stress intensity factor KI underwater-load coupling action"

Fig.18

Crack stress intensity factor KII under water-load coupling action"

Fig.19

Crack stress intensity factor KI under 1.1 MPa for each working condition"

Fig.20

Crack stress intensity factor KII under 1.1 MPa for each working condition"

1 罗苏平,但汉成,李亮,等. 移动交通荷载下饱和沥青路面的水力耦合分析[J]. 华南理工大学学报:自然科学版,2012,40(2):104-111.
Luo Su-ping, Dan Han-cheng, Li Liang, et al. Water-load coupling analysis of saturated asphalt pavement under moving traffic load[J]. Journal of South China University of Technology (Natural Science Edition),2012,40(2):104-111.
2 田冬梅, 邓德华, 田青,等. 水对水泥乳化沥青砂浆动态力学性能的影响[J]. 硅酸盐学报, 2013,41(11):1507-1513.
Tian Dong-mei, Deng De-hua, Tian Qing, et al. Effect of water on dynamic mechanical properties of cement emulsified asphalt mortar[J]. Journal of the Chinese Ceramic Society, 2013,41(11):1507-1513.
3 李志刚,邓小勇.动载作用下沥青路面内部孔隙水压力的轴对称弹性解[J].东南大学学报:自然科学版,2008(5):804-810.
Li Zhi-gang, Deng Xiao-yong. Axisymmetric elastic solution of pore water pressure in asphalt pavement under dynamic load[J]. Journal of Southeast University (Natural Science Edition),2008 (5) : 804-810.
4 朱维耀, 李华, 邓庆军,等. 多孔介质细观流动理论研究进展[J]. 工程科学学报, 2020, 20(5):1-13.
Zhu Wei-yao, Li Hua, Deng Qing-jun, et al. Advances in mesoscopic flow theory in porous media[J]. Chinese Journal of Engineering Science, 2020, 20(5):1-13.
5 Liang J Y, Li Y M, Erich B. A macro-microscopic coupled constitutive model for fluid-saturated porous media with compressible constituents[J]. Transport in Porous Media, 2022, 141(2):379-416.
6 Lu G Y, Törzs T, Liu P F, et al. Dynamic response of fully permeable pavements: development of pore pressures under different modes of loading[J]. Journal of Materials in Civil Engineering, 2020, 41(5): 6-13.
7 Yeh C L, Lo W C, Lin C W. Influence of pore water pressure change on consolidation behavior of saturated poroelastic medium[J]. Proceedings of the International Association of Hydrological Sciences, 2020, 2(7): 18-24.
8 董泽蛟, 谭忆秋, 曹丽萍,等. 水-荷载耦合作用下沥青路面孔隙水压力研究[J]. 哈尔滨工业大学学报, 2007, 39(10):1614-1617.
Dong Ze-jiao, Tan Yi-qiu, Cao Li-ping.Research on pore pressure within asphalt pavement under the coupled moisture-loading action[J].Journal of Harbin Institute of Technology,2007,39(10):1614-1617.
9 董泽蛟, 曹丽萍, 谭忆秋. 饱水沥青路面动力响应的空间分布分析[J]. 土木建筑与环境工程, 2007, 29(4):79-82.
Dong Ze-jiao, Cao Li-ping, Tan Yi-qiu. Spatial distribution analysis of dynamic response of saturated asphalt pavement[J]. Civil, Architectural and Environmental Engineering, 2007, 29(4):79-82.
10 董泽蛟, 曹丽萍, 谭忆秋,等. 表面排水条件对饱水沥青路面动力响应的影响分析[J]. 公路交通科技, 2008, 25(1):10-15.
Dong Ze-jiao, Cao Li-ping, Tan Yi-qiu, et al. Influence of surface drainage conditions on dynamic response of saturated asphalt pavement[J]. Journal of Highway and Traffic Science and Technology, 2008, 25(1):10-15.
11 陈团结. 大跨径钢桥面环氧沥青混凝土铺装裂缝行为研究[D]. 南京: 东南大学交通学院, 2006.
Chen Tuan-jie. Study on crack behavior of epoxy asphalt concrete pavement of long span steel bridge deck [D]. Nanjing: School of Transportation,Southeast University, 2006.
12 吴国雄, 谭栋杰, 袁传泯. 荷载与渗压耦合作用下沥青面层层底裂纹扩展分析[J]. 重庆交通大学学报:自然科学版, 2012, 31(5):962-965.
Wu Guo-xiong, Tan Dong-jie, Yuan Chuan-min. Analysis of crack propagation at the bottom of asphalt surface under the coupling of load and osmotic pressure[J]. Journal of Chongqing Jiaotong University (Natural Science Edition), 2012, 31(5):962-965.
13 徐华, 杨绿峰, 佘振平. 半刚性基层沥青路面反射裂缝扩展过程分析的Williams单元[J]. 工程力学, 2013, 30(6):247-253.
Xu Hua, Yang Lyu-feng, She Zhen-ping. Williams element analysis of reflective crack propagation process in semi-rigid base asphalt pavement [J]. Engineering Mechanics, 2013, 30(6):247-253.
[1] Ying-li GAO,Xiao-lei GU,Mei-jie LIAO,Xin-lang HU,Yu-tong XIE. Rheological properties and modification mechanism of SiO2 aerogel/reactive elastomer terpolymer/Polyphosphoric acid composite modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1978-1987.
[2] Lei WANG,Dong-xia LI,Song ZHOU,Li HUI,Zhen-xin SHEN. Fatigue crack propagation behavior and life prediction of 2024-O aluminum alloy FSW joints [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1563-1569.
[3] Yong-li XU,Xu-lan YANG,Ji-sen ZHOU,Song-han YANG,Ming-gang SUN. Asphalt fume composition of warm mix asphalt and smoke suppression performance of warm mix agent [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1701-1707.
[4] Xiao-kang ZHAO,Zhe HU,Zhen-xing NIU,Jiu-peng ZHANG,Jian-zhong PEI,Yong WEN. Meso-cracking behavior of cement-stabilized macadam materials based on heterogeneous model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1258-1266.
[5] Tong-tong WAN,Hai-nian WANG,Wen-hua ZHENG,Po-nan FENG,Yu CHEN,Chen ZHANG. Thermal contraction deformation behavior of asphalt mixture overlay with coordination of unbound aggregate layer [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1045-1057.
[6] Li HUI,Lei JIN,Wan-wan SONG,Song ZHOU,Jin-lan AN. Crack growth rate of SMA490BW steel in different welding areas for bogie [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 650-656.
[7] Jun CHEN,Zhen-hao SUN,Cheng ZHAO,Xin-yi WU,Jun-peng WANG. Laboratory investigation on cooling effect of multi-layer phase change asphalt concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 180-187.
[8] Nai-peng TANG,Chen-yang XUE,Shao-peng LIU,Hong-zhou ZHU,Rui LI. Review on aging mechanism, characterization and evaluation of crumb rubber modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 22-43.
[9] Zhuang WANG,Zhen-gang FENG,Dong-dong YAO,Qi CUI,Ruo-ting SHEN,Xin-jun LI. Research progress of conductive asphalt concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 1-21.
[10] Sheng-qian ZHAO,Zhuo-hong CONG,Qing-long YOU,Yuan LI. Adhesion and raveling property between asphalt and aggregate: a review [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2437-2464.
[11] Tao MA,Yuan MA,Xiao-ming HUANG. Optimal combination of key parameters of intelligent compaction based on multiple nonlinear regression [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2067-2077.
[12] Liu YANG,Chuang-ye WANG,Meng-yan WANG,Yang CHENG. Traffic flow characteristics of six⁃lane freeways with a dedicated lane for automatic cars [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2043-2052.
[13] Zheng-feng ZHOU,Xiao-tao YU,Ya-le TAO,Mao ZHENG,Chuan-qi YAN. High-temperature performance evaluation of resin and elastomer high viscosity asphalt based on grey correlation analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2078-2088.
[14] Qing-xia ZHANG,Ji-lin HOU,Xin-hao AN,Xiao-yang HU,Zhong-dong DUAN. Road roughness identification method based on vehicle impulse response [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1765-1772.
[15] Ping JIANG,Ye-wen CHEN,Xian-hua CHEN,Wei-qing ZHANG,Na LI,Wei WANG. Unconfined compression behavior of modified lime stabilized soil under dry wet and freeze⁃thaw cycles [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1809-1818.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!