Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (8): 2741-2745.doi: 10.13229/j.cnki.jdxbgxb.20240791

Previous Articles    

High speed moving object detection algorithm based on Gaussian kernel density estimation

Zhi-rong GUO1,2(),Gang LI1()   

  1. 1.School of Mathematics Science,Yangzhou University,Yangzhou 225002,China
    2.School of Mathematics Science,Yangzhou Polytechnic University,Yangzhou 225009,China
  • Received:2024-07-17 Online:2025-08-01 Published:2025-11-14
  • Contact: Gang LI E-mail:guozr@yzpc.edu.cn;gli@yzu.edu.cn

Abstract:

The scene in a video sequence changes in real time, sometimes the foreground target changes together with the background, and sometimes the foreground target changes while the background remains unchanged. It is very difficult to achieve detection and tracking of foreground targets. To this end, a high-speed moving object detection algorithm based on Gaussian kernel density estimation is proposed. Using Gaussian kernel density estimation to establish a background model and obtain the probability density distribution of each pixel point; Extract keyframes containing high-speed moving targets from the video sequence and calculate the weight of each keyframe's grayscale value; Using a full sample timing and real-time selective update strategy to update the background model, and using the updated model to achieve accurate detection of high-speed moving targets. The high-speed motion object detection was carried out on a certain video segment in the highwayI-raw standard test sequence, and the results showed that the proposed method has high detection accuracy.

Key words: Gaussian kernel density estimation, high speed moving target detection, probability density distribution, background model, keyframes

CLC Number: 

  • TP324

Fig.1

Results of the high-speed motion target detection of the proposed method"

Fig.2

Performance comparison of three algorithms for high-speed moving target detection"

[1] 裘莉娅, 陈玮琳, 李范鸣, 等. 复杂背景下基于汉明距离约束的Hash_LBP运动目标快速检测算法[J].光子学报, 2022, 51(9): 292-308.
Qiu Li-ya, Chen Wei-lin, Li Fan-ming, et al. Fast Hash_LBP moving target detection algorithm based on hamming distance constraint in complex background[J]. Acta Photonica Sinica, 2022, 51(9): 292-308.
[2] 贾澎涛, 侯长民, 李娜. 复杂背景下改进的ViBe运动目标检测算法[J]. 应用光学, 2023, 44(5): 1045-1053.
Jia Peng-tao, Hou Chang-min, Li Na. Improved ViBe moving target detection algorithm in complex background[J]. Journal of Applied Optics, 2023, 44(5): 1045-1053.
[3] 汪鹏, 张大蔚, 陆正军, 等. 基于可靠性低秩因子分解和泛化差异性差分的运动目标检测[J]. 计算机应用, 2023, 43(2): 514-520.
Wang Peng, Zhang Da-wei, Lu Zheng-jun, et al. Moving object detection based on reliability low-rank factorization and generalized diversity difference[J]. Journal of Computer Applications, 2023, 43(2): 514-520.
[4] 欧先锋, 晏鹏程, 王汉谱, 等. 基于深度帧差卷积神经网络的运动目标检测方法研究[J]. 电子学报,2020, 48(12): 2384-2393.
Xian-feng Ou, Yan Peng-cheng, Wang Han-pu, et al. Research of moving object detection based on deep frame difference convolution neural network[J]. Acta Electronica Sinica, 2020, 48(12): 2384-2393.
[5] 蔡心悦, 周杨, 胡校飞, 等. 基于超分辨率重建的小目标智能检测算法[J]. 激光与光电子学进展, 2023, 60(12): 51-59.
Cai Xin-yue, Zhou Yang, Hu Xiao-fei, et al. Intelligent detection algorithm for small targets based on super-resolution reconstruction [J]. Laser & Optoelectronics Progress, 2023, 60(12): 51-59.
[6] 刘袁缘, 王超凡, 王文斌, 等. 面向多种天气场景下目标检测的多域动态平均教师模型[J]. 计算机辅助设计与图形学学报, 2024, 36(3): 388-398.
Liu Yuan-yuan, Wang Chao-fan, Wang Wen-bin, et al. Multi-domain dynamic mean teacher for object detection in complex weather[J]. Journal of Computer-Aided Design & Computer Graphics, 2024, 36(3): 388-398.
[7] 胡海苗, 沈柳青, 高立崑, 等. 运动信息引导的目标检测算法[J]. 北京航空航天大学学报, 2022, 48(9):1710-1720.
Hu Hai-miao, Shen Liu-qing, Gao Li-kun, et al. Object detection algorithm guided by motion information[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1710-1720.
[8] 王一超, 鲁芹, 吴孟伟. 结合前景轮廓提取的改进ViBe运动目标检测算法[J]. 微电子学与计算机,2023, 40(8): 37-44.
Wang Yi-chao, Lu Qin, Wu Meng-wei. Accurate and efficient moving object detection with ViBe and visual foreground contour extractor[J]. Microelectronics & Computer, 2023, 40(8): 37-44.
[9] 张顺生, 李鑫, 黄栎冰, 等. 距离角度失配条件下的FDA-MIMO雷达运动目标检测算法[J]. 信号处理,2024, 40(1): 197-206.
Zhang Shun-sheng, Li Xin, Huang Li-bing, et al. Moving target detection algorithm for FDA-MIMO radar under range angle mismatch conditions[J]. Journal of Signal Processing, 2024, 40(1): 197-206.
[10] 杨文彬, 王悦斌, 李旦, 等. 贝叶斯推理运动轨迹相干累积的动目标检测方法[J]. 航空学报, 2023,44(6): 267-281.
Yang Wen-bin, Wang Yue-bin, Li Dan, et al. A moving target detector with coherent integration of Bayesian-inferred motion trajectories[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(6): 267-281.
[11] 陈卡, 黄俊杰, 包嘉琪, 等. 基于HSV空间融合Retinex算法的全天候运动目标检测[J]. 矿冶工程,2023, 43(5): 17-21.
Chen Ka, Huang Jun-jie, Bao Jia-qi, et al. All⁃weather moving target detection by Retinex algorithm based on HSV space conversion[J]. Mining and Metallurgical Engineering, 2023, 43(5): 17-21.
[12] 王欣宇, 陈广锋, 李侠. 基于改进ViBe算法的运动目标检测[J]. 东华大学学报: 自然科学版, 2023, 49(1): 95-102.
Wang Xin-yu, Chen Guang-feng, Li Xia. Moving object detection based on an improved ViBe algorithm[J]. Journal of Donghua University (Natural Science), 2023, 49(1): 95-102.
[13] Zha L B, Meng W W, Shi D F, et al. Complementary moment detection for tracking a fast-moving object using dual single-pixel detectors[J]. Optics Letters, 2022, 47(4): 870-873.
[14] Li H D, Fang G H, Ye B C, et al. Rnase h-driven crrna switch circuits for rapid and sensitive detection of various analytical targets[J]. Analytical Chemistry, 2023, 95(50): 18549-18556.
[15] 王文青, 李继文, 刘光灿. 结合多通道注意力机制的目标检测[J]. 计算机仿真, 2023, 40(12): 288-292.
Wang Wen-qing, Li Ji-wen, Liu Guang-can. Object detection combined with multi-channel attention mechanism[J]. Computer Simulation, 2023, 40(12):288-292.
[1] Yuan JI,Ya-qi YU. Optimization algorithm for speech facial video generation based on dense convolutional generative adversarial networks and keyframes [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 986-992.
[2] De-lun PAN,Jun JI,Yue-jin ZHANG. Dynamic object detection method of video surveillance based on motion vector space coding [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1370-1374.
[3] FU Bo, LI Wen-hui, CHEN Bo, WANG Cong, WANG Ying. Abnormal behavior detection based on weighted energy of optical flow [J]. 吉林大学学报(工学版), 2013, 43(06): 1644-1649.
[4] FENG Jie, CHEN Yao-wu. Background modeling and foreground object segmentation in H.264 compressed domain [J]. 吉林大学学报(工学版), 2011, 41(01): 239-0243.
[5] WANG Dian-hai, HU Hong-yu, LI Zhi-hui, QU Zhao-wei. Detection and recognition algorithm of illegal parking [J]. 吉林大学学报(工学版), 2010, 40(01): 42-0046.
[6] ZHAO Hong-wei,FENG Jia,ZANG Xue-bai,SONG Bo-tao. Practical moving target detection and tracking algorithm [J]. 吉林大学学报(工学版), 2009, 39(增刊2): 386-0390.
[7] Li Zhi-hui, Zhang Chang-hai,Qu Zhao-wei,Wei Wei1,Wang Dian-hai . Background initialization algorithm in traffic flow video detection [J]. 吉林大学学报(工学版), 2008, 38(01): 148-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!