Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (8): 2782-2790.doi: 10.13229/j.cnki.jdxbgxb.20231309

Previous Articles    

Multi task balancing strategy for robot manipulators

Ke ZHU1,2(),Zhi-ming XING1,Xiang-yu KANG1   

  1. 1.School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
    2.Jiangsu Raysmart Intelligent Manufacturing Technology Co. ,Ltd. ,Wuxi 214142,China
  • Received:2023-11-28 Online:2025-08-01 Published:2025-11-14

Abstract:

Continuing the research on multi-task balancing strategy for robot manipulators, the use of parallel robot manipulators in automated assembly lines allows for precise grasping and handling of dynamic objects on conveyors. However, the challenge lies in ensuring leakage-free handling of materials, which cannot be achieved by a single robot manipulator. This highlights the importance of multi-robot manipulator collaboration. In this study, a novel approach based on the deep Q-learning (DQN) algorithm is proposed to address the task balancing problem for robot manipulators. The objective is to minimize the cost function associated with the manipulation tasks. To improve the performance of the DQN algorithm, the study incorporates the actor-critic algorithm and introduces the concept of balancing advantage function. This allows for the optimization of the execution strategy, ensuring a balanced allocation of tasks among the robot manipulators. Experimental results validate the effectiveness of the proposed algorithm. It demonstrates a 17.1% improvement in convergence performance compared to the traditional DQN algorithm. Additionally, under predefined experimental conditions, the proposed algorithm achieves approximately a 31.6% reduction in overall cost when compared with the baseline algorithm. This significant reduction in cost enhances the overall execution efficiency of robot manipulators in multi-task scenarios.

Key words: robot manipulator, deep Q-learning algorithm, balanced allocation of task, multi-task

CLC Number: 

  • TP241

Fig.1

Physical structure diagram of parallel manipulator grasping"

Table 1

Different task processes and subtask combinations"

任务定位识别测量固定拾取搬运释放

1.探针复位位置

2.与半导体测试仪连接定位检测

3.移动至组件处

1.探针位置锁定固定

1.探针抓取

2.组件分离基底

1.目标位置确定

2.搬运目标位置

1.组件放置

2.组件着地

子任务组合a-bbb-ca-b-cc-d

Fig.2

Target positioning and recognition process"

Fig.3

DRL-AC3O execution block diagram"

Table 2

Experimental configuration"

机械手排组传送带承载量/g传送速率/(mm·s-1能耗/j
11001500.002
21501000.003
32002000.001

Fig.4

Convergence characteristics of loss function"

Fig.5

Convergence characteristics of optimal functions"

Fig.6

Total cost comparison"

[1] 张映锋, 张党, 任杉. 智能制造及其关键技术研究现状与趋势综述[J]. 机械科学与技术, 2019, 38(3):329-338.
Zhang Ying-feng, Zhang Dang, Ren Shan. Survey on current research and future trends of smart manufacturing and its key technologies[J]. Mechanical Science and Technology for Aerospace Engineering,2019, 38(3): 329-338.
[2] Parikh P J, Lam S S Y. A hybrid strategy to solve the forward kinematics problem in parallel manipulators[J]. IEEE Transactions on Robotics, 2005, 21(1):18-25.
[3] 国家制造强国建设战略咨询委员会. 中国制造2025蓝皮书[M]. 北京: 电子工业出版社, 2016.
National Manufacturing Power Construction Strategy Advisory Committee. China manufacturing 2025 bluebook[M]. Beijing: Electronic Industry Press,2016.
[4] Chen X Y, Ren G Q. Key technologies and development trends of intelligent manufacturing and robot application[J]. IOP Conference Series: Earth and Environmental Science,2020,461(1): 012049.
[5] 管声启, 张理博, 刘通, 等. 基于改进粒子群算法的机械手抓取力自整定模糊PID控制[J].西安工程大学学报,2024,25(2):1-8.
Guan Sheng-qi, Zhang Li-bo, Liu Tong, et al. Self-tuning fuzzy PID control of manipulator grasping force based on improved particle swarm optimization algorithm[J]. Journal of Xi'an Polytechnic University,2024,25(2):1-8.
[6] 郭美君. 机械手控制系统的研究与应用[J]. 电动工具, 2023(6): 24-26.
Guo Mei-jun. Research and application of manipulator control system[J].Electric Tools,2023(6):24-26.
[7] 卢志琦. 基于卷积神经网络的煤矿支架搬运车轮胎助力机械手抓取姿态规划方法[J]. 煤矿机械, 2024,45(2): 179-182.
Lu Zhi-qi. Grasping attitude planning method of tire assisted manipulator of support truck in coal mine based on convolutional neural network[J].Coal Mine Machinery, 2024, 45(2): 179-182.
[8] 蒋智蓓, 张松亚, 邓佳成, 等. 基于计算机视觉的机械手包裹分拣与放置系统[J]. 机电工程技术, 2024, 53(1): 212-215.
Jiang Zhi-bei, Zhang Song-ya, Deng Jia-cheng, et al. A robot parcel sorting and placement system based on computer vision[J].Mechanical & Electrical Engineering Technology, 2024, 53(1): 212-215.
[9] Chen X Y, Ren G Q. Key technologies and development trends of intelligent manufacturing and robot application[J]. IOP Conference Series: Earth and Environmental Science,2020,461(1): 012049.
[10] 姚国林, 王合闯. 改进的APF算法在采摘机械手运动规划中的应用[J]. 机床与液压, 2023, 51(23):65-72.
Yao Guo-lin, Wang He-chuang. Application of improved APF algorithm in motion planning of picking manipulator[J]. Machine Tool & Hydraulics, 2023,51(23): 65-72.
[11] 张明文, 于振中. 工业机器人原理及应用:DELTA 并联机器人[M]. 哈尔滨: 哈尔滨工业大学出版社,2018.
Zhang Ming-wen, Yu Zhen-zhong. Principles and Applications of Industrial Robots: DELTA Parallel Robots[M]. Harbin: Harbin Institute of Technology Press,2018.
[12] 张英坤. Delta并联机器人的研究进展[J]. 机床与液压, 2016, 44(21): 16-20.
Zhang Ying-kun. Research progress and status of Delta parallel robot[J]. Machine Tool & Hydraulics, 2016, 44(21): 16-20.
[13] 许礼进, 刘有余, 刘阳. DELTA机器人逆运动学的分析与控制[J]. 制造业自动化, 2014, 36(17): 66-69.
Xu Li-jin, Liu You-yu, Liu Yang. Inverse-kinematic analysis and control of a DELTA robot[J]. Manufacturing Automation, 2014, 36(17): 66-69.
[14] 张颖, 赵建国, 沈鑫, 等. Delta并联机器人的运动学分析及虚拟样机仿真[J]. 计量与测试技术, 2019, 46(11): 20-24.
Zhang Ying, Zhao Jian-guo, Shen Xin, et al. The kinematic analysis and virtual prototyping simulation of a Delta parallel manipulator[J].Metrology & Measurement Technique, 2019, 46(11): 20-24.
[15] 车林仙. 6-CPS正交并联机器人位置正解分析[J].农业机械学报, 2009, 40(11): 212-218.
Che Lin-xian. Forward positional analysis of 6-CPS orthogonal parallel manipulators[J]. Transactions of the Chinese Society of Agricultural Machinery, 2009,40(11): 212-218.
[16] 罗玉坤, 周健, 李立君, 等. 基于旋量理论的4-R(SS) 2 并联机器人正运动学分析[J]. 机床与液压, 2018, 46(3): 33-37.
Luo Yu-kun, Zhou Jian, Li Li-jun, et al. Direct kinematic analysis of 4-R(SS) 2 parallel robot based on screw theory[J]. Machine Tool & Hydraulics, 2018, 46(3): 33-37.
[1] You QU,Wen-hui LI. Multiple object tracking method based on multi-task joint learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2932-2941.
[2] Hai-ying ZHAO,Wei ZHOU,Xiao-gang HOU,Xiao-li ZHANG. Double-layer annotation of traditional costume images based on multi-task learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 293-302.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!