吉林大学学报(工学版) ›› 2011, Vol. 41 ›› Issue (增刊1): 235-239.

• paper • Previous Articles     Next Articles

Global exponentially synchronization of Hindmarsh-Rose neuron model

JIA Qiu-ju, CHEN Zeng-qiang   

  1. Department of Automation, Nankai University, Tianjin 300071, China
  • Received:2011-05-16 Online:2011-09-01 Published:2011-09-01

Abstract:

Global exponential synchronization was reached between two coupled neuron models with same parameter values and different initial conditions through simple feedback control.Meanwhile,the zero solution of the error system was demonstrated to be global exponential stable by constructing a positive Lyapunov function of error system,whose derivative was negative.Therefore,completely synchronization can be reached between the drive system and receive system without calculating the Lyapunov exponent.

Key words: control theory, Hindmarsh-Rose model, globally exponentially synchronized, feedback controller, Lyapunov function

CLC Number: 

  • TP13


[1] Benucci A,Verschure P F M J,Konig P.High ordere vents in cortical networks:a lower bound
[J].Physical Review E,2004,70(5):051909-051916.

[2] Tass P,Rosenblum G M,Weule J,et al.Detection ofn :m phase locking from noisy data:application tom agnetoencephalography
[J].Physical Review Letters,1998,81(15):3291-3294.

[3] Grosse P,Cassidy M J,Brown P.EEG-EMG,MEG-E MG and EMG-EMG frequency analysis:physiological principles and clinical applications
[J].ClinicalN europhysiology,2002,113(10):1523-1531.

[4] Fang X L,Yu H J,Jiang Z L.Chaotic synchronization of nearest-neighbor diffusive coupling Hindmarsh-Rose neural networks in noisy environments
[J].Chaos,Solitons and Fractals,2009,39(5):2426-2441.

[5] Shi X,Lu Q S.Coherence resonance and synchronization of Hindmarsh-Rose neurons with noise
[J].C hinese Physics,2005,14(6):1088-1094.

[6] Wu Y,Xu J X,He D H,et al.Generalized synchronization induced by noise and parameter mismatchingi n Hindmarsh-Rose neurons
[J].Chaos,Solitons andF ractals,2005,23(5):1605-1611.

[7] Pecora L M,Carroll T L.Master stability functionf or synchronized coupled systems
[J] Physical Review Letters,1998,80(10):2109-2112.

[8] Dhamala M,Jirsa V K,Ding M Z.Enhancement ofn eural synchrony by time delay
[J].Physical Review Letters,2004,92(7):074104-074107.

[9] L & #220;J H,Zhou T S,Zhang S C.Chaos synchronization between linearly coupled chaotic systems
[J].C haos,Soliton and Fractals,2002,14(4):529-541.

[10] Yu H J,Lin C.The chaotic synchronization of Hindmarsh-Rose neural networks
[J].Acta BiophysicaS inica,2006,22(5):383-388.

[11] Xu F,Yu P.Global stabilization and synchronization of N-scroll chaotic attractors in a modified chua's circuit with hyperbolic tangent function
[J].International Journal of Bifurcation and Chaos,2009,19(8): 2563-2572.

[12] Hodgkin A L,Huxley A F.A quantitative description of membrane current and its application to conduction and excitation in nerve
[J].Journal of Physiology,1952,117(4):500-544.

[13] Storace M,Linaro D,de Lange E.The Hindmarsh-R ose neuron model:Bifurcation analysis and piecewise-linear approximations
[J].Chaos,2008,18(3): 033128.

[14] Ito R,Totoki Y,Suemitsu H,et al.Adaptive inpute stimation of a Hodgkin-Huxley neuron
[C] ∥I CROS-SICE International Joint Conference,Japan, 2009:5230-5235.

[1] WANG Chun-yang, XIN Rui-hao, SHI Hong-wei. Decreasing time delay auto-disturbance rejection control method for large time delay systems [J]. 吉林大学学报(工学版), 2017, 47(4): 1231-1237.
[2] DENG Li-fei, SHI Yao-wu, ZHU Lan-xiang, YU Ding-li. Failure detection of closed-loop systems and application to SI engines [J]. 吉林大学学报(工学版), 2017, 47(2): 577-582.
[3] WANG Chun-yang, CAI Nian-chun, LI Ming-qiu, LIU Xue-lian. Robust fractional order proportional differential controller parameters algorithm based on phasor [J]. 吉林大学学报(工学版), 2015, 45(6): 1933-1940.
[4] WANG Ping, JIANG He-yao, FAN Ya-nan, CHEN Hong. Individual cylinder air-fuel ratio estimation based on input observer [J]. 吉林大学学报(工学版), 2013, 43(06): 1574-1580.
[5] CONG Yan-feng, AN Xiang-jing, CHEN Hong, YU Zai-tao. Path following control of car-like robot based on rolling windows [J]. 吉林大学学报(工学版), 2012, 42(01): 182-187.
[6] HUANG Guo-yong. Terminal sliding mode control based on neural network disturbance observer [J]. 吉林大学学报(工学版), 2011, 41(6): 1726-1730.
[7] WANG Ping, CHEN Hong, LU Xiao-hui. Active queue management of delay network based on model predictive control [J]. 吉林大学学报(工学版), 2011, 41(4): 1089-1095.
[8] WANG Yu-hang, YAO Yu, MA Ke-mao. Error estimation of second order extended state observer [J]. 吉林大学学报(工学版), 2010, 40(01): 143-0147.
[9] LI Xue-jun, CHEN Hong, YU Shu-you . Unbiased H filtering for time delay system
[J]. 吉林大学学报(工学版), 2009, 39(02): 473-0479.
[10] GE Hong-wei1,LI Xiao-lin2,LIANG Yan-chun3,HE Xiang-dong4 . Immune PSO-based dynamic recurrent neural network for identifying and controlling nonlinear systems
[J]. 吉林大学学报(工学版), 2008, 38(04): 858-864.
[11] GE Hong-wei, LIANG Yan-chun. Evolutionary Elman Neural Network Model and [J]. 吉林大学学报(工学版), 2005, 35(05): 511-0519.
Viewed
Full text
132
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 132


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!