吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (01): 106-110.

Previous Articles     Next Articles

Heuristic algorithm of computing minimal hitting sets matrix

OUYANG Dan-tong1,2, GENG Xue-na1,2, GUO Jin-song1,2, WANG Xiao-yu1,2   

  1. 1. Key Laboratory of Symbolic Computation and Knowledge Engineering for Ministry of Education, Jilin University, Changchun 130012, China;
    2. College of Computer Science and Technology, Jilin University, Changchun 130012, China
  • Received:2012-03-20 Online:2013-01-01 Published:2013-01-01

Abstract: In model-based diagnosis, computing minimal hitting sets is an important part of the representation of candidate diagnostic results. In this paper, a new method is proposed to obtain the minimal hitting sets by matrix. In this method, the related information of the conflict sets is stored in a matrix. The frequencies of elements of the set cluster are taken as the heuristic information to compute the minimal hitting sets. The data structure of the algorithm is simple and the implementation of the algorithm is easy. The introduction of heuristic information reduces the number of the generated nodes. This algorithm can generate and only generate all the minimal hitting sets. Experiment results show that the proposed algorithm has a better computational efficiency than other algorithms.

Key words: artificial intelligence, model-based diagnosis, conflict set, minimal hitting set, heuristic algorithm

CLC Number: 

  • TP18
[1] Reiter R. A theory of diagnosis from first principles[J]. Artificial Intelligence, 1987, 32 (1): 57-96.

[2] Greiner R, Smith B A, Wilkerson R W. A correction to the algorithm in Reiter's theory of diagnosis[J]. Artificial Intelligence, 1989, 41 (1): 79-88.

[3] Wotawa F. A variant of Reiter's hitting-set algori-thm[J]. Information Processing Letters, 2001,79:45-51.

[4] 姜云飞, 林笠. 用对分HS-树计算最小碰集[J]. 软件学报, 2002,13 (12): 2267-2274. Jiang Yun-fei, Lin Li. Computing the minimal hitting sets with binary HS-TREE[J]. Journal of Software, 2002, 13(12): 2267-2274.

[5] Lin L, Jiang Y F. Computing minimal hitting sets with genetic algorithm//Proceedings of the 13th International Workshop on Principles of Diagnosis, Austria, 2002:77-80.

[6] 姜云飞, 林笠. 用布尔代数方法计算最小碰集[J]. 计算机学报, 2003,26(8):919-924. Jiang Yun-fei, Lin Li. The computation of hitting sets with boolean formulas[J]. Chinese Journal of Computers, 2003,26(8):919-924.

[7] Zhao X F, Ouyang D T. A method of combining SE-tree to compute all minimal hitting sets[J]. Progress in Natural Science,2006(2): 169-174.

[8] 陈晓梅, 孟晓风, 乔仁晓. 基于BNB-HSSE计算全体碰集的方法[J]. 仪器仪表学报, 2010, 31(1): 61-67. Chen Xiao-mei, Meng Xiao-feng, Qiao Ren-xiao. Method of computing all minimal hitting set based on BNB-HSSE[J]. Chinese Journal of Science Instrument, 2010, 31(1): 61-67.
[1] DONG Sa, LIU Da-you, OUYANG Ruo-chuan, ZHU Yun-gang, LI Li-na. Logistic regression classification in networked data with heterophily based on second-order Markov assumption [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1571-1577.
[2] GU Hai-jun, TIAN Ya-qian, CUI Ying. Intelligent interactive agent for home service [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1578-1585.
[3] WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Measurement of graph similarity based on vertical dimension sequence dynamic time warping method [J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[4] ZHANG Hao, ZHAN Meng-ping, GUO Liu-xiang, LI Zhi, LIU Yuan-ning, ZHANG Chun-he, CHANG Hao-wu, WANG Zhi-qiang. Human exogenous plant miRNA cross-kingdom regulatory modeling based on high-throughout data [J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[5] HUANG Lan, JI Lin-ying, YAO Gang, ZHAI Rui-feng, BAI Tian. Construction of disease-symptom semantic net for misdiagnosis prompt [J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[6] LI Xiong-fei, FENG Ting-ting, LUO Shi, ZHANG Xiao-li. Automatic music composition algorithm based on recurrent neural network [J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[7] LIU Jie, ZHANG Ping, GAO Wan-fu. Feature selection method based on conditional relevance [J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[8] JIAO Yu-ling, XU Liang-cheng, WANG Zhan-zhong, ZHANG Peng. Balance experiment and analysis of double U-shaped assembly line based on directed network [J]. 吉林大学学报(工学版), 2018, 48(2): 454-459.
[9] WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Heuristic algorithm of all common subsequences of multiple sequences for measuring multiple graphs similarity [J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[10] YANG Xin, XIA Si-jun, LIU Dong-xue, FEI Shu-min, HU Yin-ji. Target tracking based on improved accelerated gradient under tracking-learning-detection framework [J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[11] LIU Xue-juan, YUAN Jia-bin, XU Juan, DUAN Bo-jia. Quantum k-means algorithm [J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[12] QU Hui-yan, ZHAO Wei, QIN Ai-hong. A fast collision detection algorithm based on optimization operator [J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603.
[13] LI Jia-fei, SUN Xiao-yu. Clustering method for uncertain data based on spectral decomposition [J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611.
[14] SHAO Ke-yong, CHEN Feng, WANG Ting-ting, WANG Ji-chi, ZHOU Li-peng. Full state based adaptive control of fractional order chaotic system without equilibrium point [J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[15] WANG Sheng-sheng, WANG Chuang-feng, GU Fang-ming. Spatio-temporal reasoning for OPRA direction relation network [J]. 吉林大学学报(工学版), 2017, 47(4): 1238-1243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!