吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 533-538.doi: 10.13229/j.cnki.jdxbgxb20160411

Previous Articles     Next Articles

Target tracking based on improved accelerated gradient under tracking-learning-detection framework

YANG Xin1, 2, XIA Si-jun1, LIU Dong-xue1, FEI Shu-min3, HU Yin-ji2   

  1. 1.College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2.Key Laboratory of Photoelectric Control Technology, Luoyang 471000, China;
    3.School of Automation, Southeast University, Nanjing 210096, China
  • Received:2016-04-05 Online:2018-03-01 Published:2018-03-01

Abstract: The main challenges in a single target persistent tracking are the factors such as the change of the target pose, similar background and occlusion, which account for the difficulty in solving the drift problem. Based on Tracking-Learning-Detection (TLD), we propose an improved Li Tracker Using Accelerated Proximal Gradient Approach (L1APG) tracking algorithm. First, we add occlusion detection to the L1APG tracker. Then, we transform the occlusion problem into the weight of the target template and the background template coefficients. Finally, the original tracker is replaced by the improved L1APG tracker in the traditional TLD algorithm, the coefficient weights vary adaptively according to the degree of occlusion in real time, which contributes to improving the tracking results effectively. Experiments show that, compared with TLD and L1 tracking algorithms, the proposed algorithm can better deal with the occlusion and drift problems and possesses better stability and robustness.

Key words: artificial intelligence, target tracking, tracking-learning-detection (TLD), occlusion, drift

CLC Number: 

  • TP391.41
[1] Beaudry C, Péteri R, Mascarilla L. Action recognition in videos using frequency analysis of critical point trajectories[C]∥2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 2014: 1445-1449.
[2] Dondo D G, Redolfi J A, Griffa M, et al. Target tracking system using multiple cameras and Bayesian estimation[J]. IEEE Latin America Transactions, 2016, 14(6): 2713-2718.
[3] 郝志成,高文. 多模跟踪技术在轮式侦察车图像处理器的应用[J]. 中国光学, 2011, 4(5): 480-488.
Hao Zhi-cheng, Gao Wen. Application of multi-pattarn tracking in wheel type scout car image processor[J]. Chinese Optics, 2011, 4(5): 480-488.
[4] 熊晶莹, 戴明. 适应移动智能设备的目标跟踪器[J]. 光学精密工程, 2017,25(12):3152-3159.
Xiong Jing-ying, Dai Ming. Design of tracker for mobile smart devices[J]. Optics and Precision Engineering, 2017, 25(12): 3152-3159.
[5] Buehler P, Everingham M, Huttenlocher D P, et al. Long term arm and hand tracking for continuous sign language TV broadcasts[C]∥Proceedings of the 19th British Machine Vision Conference, Leeds, UK, 2008: 1105-1114.
[6] Xu J, Li J. Moving target tracking algorithm based on scale invariant optical flow method[C]∥ Information Science and Control Engineering (ICISCE), Beijing, China, 2016: 468-472.
[7] 杨欣,费树岷,李刚,等. 基于复杂特征融合的改进mean shift目标跟踪[J]. 控制与决策,2014(7):1297-1300.
Yang Xin,Fei Shu-min, Li Gang, et al. Improved mean shift target tracking based on complex feature fusion[J]. Control and Decision,2014(7):1297-1300.
[8] 王田, 刘伟宁, 韩广良, 等.基于改进MeanShift的目标跟踪算法[J]. 液晶与显示, 2012,27(3): 396-400.
Wang Tian, Liu Wei-ning, Han Guang-liang, et al. Target tracking algorithm based on improved Meanshift[J].Chinese Journal of Liquid Crystals and Displays,2012,27(3):396-400.
[9] 许佳佳.基于MeanShift算法的航空影像联合分割[J].液晶与显示, 2014,29(4): 586-591.
Xu Jia-jia. Joint segmentation using MeanShift algorithm for high resolution aerial images[J]. Chinese Journal of Liquid Crystals and Displays, 2014,29(4): 586-591.
[10] 夏楠, 邱天爽, 李景春, 等. 一种卡尔曼滤波与粒子滤波相结合的非线性滤波算法[J]. 电子学报, 2013, 41(1): 148-152.
Xia Nan,Qiu Tian-shuang, Li Jing-chun, et al. A nonlinear filtering algorithm combining Kalman filter with particle filter[J]. Journal of Electronics, 2013, 41 (1): 148-152.
[11] 杜超, 刘伟宁, 刘恋.一种基于卡尔曼滤波及粒子滤波的目标跟踪算法[J].液晶与显示, 2011,26(3): 384-389.
Du Chao, Liu Wei-ning, Liu Lian. Target tracking algorithm based on Kalman filter and particle filter[J]. Chinese Journal of Liquid Crystals and Displays, 2011,26(3): 384-389.
[12] Mei X, Ling H. Robust visual track-ing using ? 1 minimization[C]∥IEEE International Conference on Computer Vision, Xi'an, China, 2009: 1436-1443.
[13] 张亚红,杨欣,沈雷,等.基于视觉显著特征的自适应目标跟踪[J]. 吉林大学学报:信息科学版,2015, 33(2):195-200.
Zhang Ya-hong, Yang Xin, Shen Lei, et al. Adaptive target tracking based on salient features of vision [J]. Journal of Jilin University (Information Science Edition), 2015, 33(2) :195-200.
[14] 李静宇,王延杰.基于子空间的目标跟踪算法研究[J].液晶与显示, 2014,29(4): 617-622.
Li Jing-yu, Wang Yan-jie. Subspace based target tracking algorithm[J]. Chinese Journal of Liquid Crystals and Displays, 2014,29(4): 617-622.
[15] Zhang K, Zhang L, Yang M H. Real-time Compressive Tracking[M].Florence, Italy:Springer, 2012: 864-877.
[16] 杨欣,刘加,周鹏宇,等. 基于多特征融合的粒子滤波自适应目标跟踪算法[J]. 吉林大学学报:工学版,2015,45(2):533-539.
Yang Xin, Liu Jia, Zhou Peng-yu,et al. Particle filter adaptive target tracking algorithm based on multi-featurefusion[J]. Journal of Jilin University(Engineering and Technology Edition), 2015,45 (2):533-539.
[17] 王暐,王春平,李军,等. 特征融合和模型自适应更新相结合的相关滤波目标跟踪[J].光学精密工程, 2016, 24(8): 2059-2066.
Wang Wei,Wang Chun-ping,Li Jun, et al. Correlation filter tracking based on feature fusing and model adaptive updating[J]. Optics and Precision Engineering, 2016, 24(8): 2059-2066.
[18] Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection[J]. IEEE Trans Pattern Anal Mach Intell, 2012, 34(7): 1409-1422.
[19] Kalal Z, Mikolajczyk K, Matas J. Forward-backward error: automatic detection of tracking failures[C]∥ International Conference on Pattern Recognition,Japan, 2010:2756-2759.
[20] 周鑫, 钱秋朦, 叶永强, 等. 改进后的 TLD 视频目标跟踪方法 [J]. 中国图象图形学报, 2013, 18(9): 1115-1123.
Zhou Xin, Qian Qiu-meng, Ye Yong-qiang, et al. The improved TLD video target tracking method[J]. Journal of Image and Graphics,2013, 18(9): 1115-1123.
[1] DONG Sa, LIU Da-you, OUYANG Ruo-chuan, ZHU Yun-gang, LI Li-na. Logistic regression classification in networked data with heterophily based on second-order Markov assumption [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1571-1577.
[2] GU Hai-jun, TIAN Ya-qian, CUI Ying. Intelligent interactive agent for home service [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1578-1585.
[3] WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Measurement of graph similarity based on vertical dimension sequence dynamic time warping method [J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[4] ZHANG Hao, ZHAN Meng-ping, GUO Liu-xiang, LI Zhi, LIU Yuan-ning, ZHANG Chun-he, CHANG Hao-wu, WANG Zhi-qiang. Human exogenous plant miRNA cross-kingdom regulatory modeling based on high-throughout data [J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[5] HUANG Lan, JI Lin-ying, YAO Gang, ZHAI Rui-feng, BAI Tian. Construction of disease-symptom semantic net for misdiagnosis prompt [J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[6] LI Xiong-fei, FENG Ting-ting, LUO Shi, ZHANG Xiao-li. Automatic music composition algorithm based on recurrent neural network [J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[7] LIU Jie, ZHANG Ping, GAO Wan-fu. Feature selection method based on conditional relevance [J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[8] WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Heuristic algorithm of all common subsequences of multiple sequences for measuring multiple graphs similarity [J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[9] LIU Xue-juan, YUAN Jia-bin, XU Juan, DUAN Bo-jia. Quantum k-means algorithm [J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[10] QU Hui-yan, ZHAO Wei, QIN Ai-hong. A fast collision detection algorithm based on optimization operator [J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603.
[11] LI Jia-fei, SUN Xiao-yu. Clustering method for uncertain data based on spectral decomposition [J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611.
[12] SHAO Ke-yong, CHEN Feng, WANG Ting-ting, WANG Ji-chi, ZHOU Li-peng. Full state based adaptive control of fractional order chaotic system without equilibrium point [J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[13] WANG Sheng-sheng, WANG Chuang-feng, GU Fang-ming. Spatio-temporal reasoning for OPRA direction relation network [J]. 吉林大学学报(工学版), 2017, 47(4): 1238-1243.
[14] MA Miao, LI Yi-bin. Multi-level image sequences and convolutional neural networks based human action recognition method [J]. 吉林大学学报(工学版), 2017, 47(4): 1244-1252.
[15] ZHOU Bing-hai, PENG Tao. Optimal schedule of just-in-time part distribution for mixed-model assembly lines [J]. 吉林大学学报(工学版), 2017, 47(4): 1253-1261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xue-juan, YUAN Jia-bin, XU Juan, DUAN Bo-jia. Quantum k-means algorithm[J]. 吉林大学学报(工学版), 2018, 48(2): 539 -544 .
[2] LIU Zhou-zhou, PENG Han. Topology control algorithm based on node reliability in WSN[J]. 吉林大学学报(工学版), 2018, 48(2): 571 -577 .
[3] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys[J]. 吉林大学学报(工学版), 2018, 48(2): 633 -639 .