吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (增刊1): 489-492.

Previous Articles     Next Articles

Biomimetic recognition method of human behavior based on HOG and SVM

WANG Dan1, ZHANG Xiang-he2   

  1. 1. Editorial Department of Journal of Bionic Engineering, Jilin University, Changchun 130022, China;
    2. Editorial Department of Journal of Jilin University(Engineering and Technology Edition), Jilin University, Changchun 130022, China
  • Received:2011-09-20 Published:2013-06-01

Abstract:

The robust representation of image is established by Histogram of Oriented Gradient (HOG). According to the processing mechanism of human visual system and the theory of multidimensional space biomimetic informatics, a biomimetic classification and recognition method of human behavior are proposed, which is based on HOG+SVM. The method is evaluated and compared with other commonly used methods. Results show that, for the classification and recognition of human behavior in still image, the proposed methods have better performance in recognizing different kinds of behavior, but the performance in recognizing similar behaviors still needs improvement.

Key words: artificial intelligence, Histogram of Oriented Gradient (HOG), support vector machine(SVM), human behavior, biomimetic recognition

CLC Number: 

  • TP391

[1] Smal I, Draegestein K, Galjart N, et al. Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: application to microtubule growth analysis[J]. IEEE Trans Med Imaging, 2008, 27(6): 789-804.

[2] 皮文凯, 刘宏, 查红彬. 基于自适应背景模型的全方位视觉人体运动检测[J]. 北京大学学报:自然科学版, 2004, 40(3): 458-464.

[3] 侯志强, 韩崇昭. 视觉跟踪技术综述[J]. 自动化学报, 2006, 32(4): 603-617.

[4] Wang S J, Chen X, Qin H, et al. Double synaptic weight neuron theory and its application[C]//International Conference on Advances in Natural Computation, Changsha, China, 2005, 264-272.

[5] Weber M, Welling M, Perona P. Towards automatic discovery of object categories[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2000.

[6] Zhang J, Marszalek M, Lazebnik S, et al. Local features and kernels for classification of texture and object categories: A comprehensive study[J]. International Journal of Computer Vision, 2007, 73(2): 213-238.

[7] 谭菊. 基于视觉感知的目标特性分析. 重庆: 重庆大学自动化学院, 2010.

[8] Ikizler N, Cinbis R G, Pehlivan S, et al. Recognizing Actions from Still Images[C]//19th International Conference on Pattern Recognition (ICPR), 2008:1-4.

[9] Yang Wei-long, Wang Yang, Mori Greg, et al. Recognizing Human Actions from Still Images with Latent Poses[C]//2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010: 2030-2037.

[10] Delaitre V, Laptev I, Sivic J. Recognizing human actions in still images: a study of bag-of-features and part-based representations[C]//Proceedings of the British Machine Vision Conference, 2010: 1-11.

[1] DONG Sa, LIU Da-you, OUYANG Ruo-chuan, ZHU Yun-gang, LI Li-na. Logistic regression classification in networked data with heterophily based on second-order Markov assumption [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1571-1577.
[2] GU Hai-jun, TIAN Ya-qian, CUI Ying. Intelligent interactive agent for home service [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1578-1585.
[3] WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Measurement of graph similarity based on vertical dimension sequence dynamic time warping method [J]. 吉林大学学报(工学版), 2018, 48(4): 1199-1205.
[4] ZHANG Hao, ZHAN Meng-ping, GUO Liu-xiang, LI Zhi, LIU Yuan-ning, ZHANG Chun-he, CHANG Hao-wu, WANG Zhi-qiang. Human exogenous plant miRNA cross-kingdom regulatory modeling based on high-throughout data [J]. 吉林大学学报(工学版), 2018, 48(4): 1206-1213.
[5] HUANG Lan, JI Lin-ying, YAO Gang, ZHAI Rui-feng, BAI Tian. Construction of disease-symptom semantic net for misdiagnosis prompt [J]. 吉林大学学报(工学版), 2018, 48(3): 859-865.
[6] LI Xiong-fei, FENG Ting-ting, LUO Shi, ZHANG Xiao-li. Automatic music composition algorithm based on recurrent neural network [J]. 吉林大学学报(工学版), 2018, 48(3): 866-873.
[7] LIU Jie, ZHANG Ping, GAO Wan-fu. Feature selection method based on conditional relevance [J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[8] GENG Qing-tian, YU Fan-hua, WANG Yu-ting, GAO Qi-kun. New algorithm for vehicle type detection based on feature fusion [J]. 吉林大学学报(工学版), 2018, 48(3): 929-935.
[9] WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Heuristic algorithm of all common subsequences of multiple sequences for measuring multiple graphs similarity [J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
[10] YANG Xin, XIA Si-jun, LIU Dong-xue, FEI Shu-min, HU Yin-ji. Target tracking based on improved accelerated gradient under tracking-learning-detection framework [J]. 吉林大学学报(工学版), 2018, 48(2): 533-538.
[11] LIU Xue-juan, YUAN Jia-bin, XU Juan, DUAN Bo-jia. Quantum k-means algorithm [J]. 吉林大学学报(工学版), 2018, 48(2): 539-544.
[12] QU Hui-yan, ZHAO Wei, QIN Ai-hong. A fast collision detection algorithm based on optimization operator [J]. 吉林大学学报(工学版), 2017, 47(5): 1598-1603.
[13] LI Jia-fei, SUN Xiao-yu. Clustering method for uncertain data based on spectral decomposition [J]. 吉林大学学报(工学版), 2017, 47(5): 1604-1611.
[14] SHAO Ke-yong, CHEN Feng, WANG Ting-ting, WANG Ji-chi, ZHOU Li-peng. Full state based adaptive control of fractional order chaotic system without equilibrium point [J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[15] WANG Sheng-sheng, WANG Chuang-feng, GU Fang-ming. Spatio-temporal reasoning for OPRA direction relation network [J]. 吉林大学学报(工学版), 2017, 47(4): 1238-1243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!