吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (04): 1004-1010.doi: 10.7964/jdxbgxb201304026

• paper • Previous Articles     Next Articles

DFB laser temperature control system with high stability and strong robustness

CHEN Chen, DANG Jing-min, HUANG Jian-qiang, WANG Yi-ding   

  1. State Key Laboratory of Integrated Optoelectronics, Jilin University, Changchun 130012, China
  • Received:2012-03-26 Online:2013-07-01 Published:2013-07-01

Abstract:

In order to reduce the influences of the operation temperature of Distributed Feedback (DFB) laser on its output wavelength and optical power, a strong robustness DFB laser temperature control system was developed using Ziegler-Nichols Proportion-Integral-Derivative (PID) control algorithm. Using this temperature control system, an experiment was performed on a DFB laser with a center wavelength of 1.742 μm, which was manufactured by the Institute of Semiconductor, CAS. The results indicate that the temperature accuracy of ±0.05 ℃ and control range of 5 ℃-60 ℃ can be achieved by this system respectively. The tested DFB laser works stably without center wavelength shift during long term (220 min) operation. Therefore, this temperature control system provides superior performance that guarantees the application of the DFB laser in infrared gas detection.

Key words: optoelectronics and laser technology, distributed feedback (DFB) laser, strong robustness, infrared gas detection

CLC Number: 

  • TH744.5

[1] Tittel F, Richter D, Fried A. Mid-infrared laser applications in spectroscopy[J]. Solid-State Midinfrared Laser Sources, 2003, 89:445-510.

[2] 温志渝,王玲芳,陈刚,等. 基于量子级联激光器的气体检测系统的发展与应用[J]. 光谱学与光谱分析, 2010, 30(8):2043-2048. Wen Zhi-yu,Wang Ling-fang.Chen Gang,et al. Development and application of quantum cascade laser based gas sensing system[J]. Spectroscopy and Spectral Analysis,2010, 30(8):2043-2048.

[3] Werle Peter, Slemr Franz Karl, Kormann Robert. Near- and mid-infrared laser-optical sensors for gas analysis[J]. Optics and Lasers in Engineering, 2002, 37:101-114.

[4] Maurus Tacke. New developments and applications of tunable lead salt lasers[J]. Infrared Phys Technology, 1995, 36(1): 447-463.

[5] Seufert J, Fischer M, Legge M, et al. DFB laser diodes in the wavelength range from 760 nm to 2.5 μm[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004 , 60:3243-3247.

[6] Alexandre Larrue, Olivier Bouchard, Antoine Monmayrant, et al. Precise frequency spacing in photonic crystal DFB laser arrays[J]. IEEE Photonics Technoligy Letters, 2008, 20(24): 2120-2122.

[7] Klehr A, Wenzel H, Brox O,et al. High power DFB lasers for D1 and D2 rubidium absorption spectroscopy and atomic clocks//Proc SPIE Novel In-Plane Semiconductor Lasers VIII, 2009, 7230.

[8] Lineykin S, Ben-Yaakov S. Analysis ofthermoelectric coolers by a SPICE-compatible equivalent circuit model[J]. Power Electronics Letters, 2005,3(2):63-66.

[9] Linear Technology. LTC1655 16-Bit Rail-to-Rail Micropower DAC in SO-8 Package. 1998.

[10] MAXIM. Power Drivers for Peltier TEC Modules MAX1968/MAX1969. 2002.

[11] 张国威. 可调谐激光技术[M]. 北京:国防工业出版社,2002.

[12] Rothman L S, Jacquemart D, Barbe A. The HITRAN 2004 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 96: 139-204.

[1] WANG Zheng-fang, WANG Jing, SUI Qing-mei, LI Shu-cai, ZHANG Qing-song, ZHANG Xiao. Application of target-type FBG flow velocity sensor in fracture water model test [J]. , 2012, (06): 1569-1575.
[2] CHEN Chen,HUANG Jian-qiang,LV Mo,DANG Jing-min,WANG Yi-ding. High-precision narrow pulse drive power for infrared quantum cascade laser [J]. 吉林大学学报(工学版), 2011, 41(6): 1738-1742.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] XIAO Rui, DENG Zong-cai, LAN Ming-zhang, SHEN Chen-liang. Experiment research on proportions of reactive powder concrete without silica fume[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .