吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (1): 137-144.doi: 10.13229/j.cnki.jdxbgxb201701020
• Orginal Article • Previous Articles Next Articles
QU Xing-tian, ZHAO Yong-bing, LIU Hai-zhong, WANG Xin, YANG Xu, CHEN Hang-de
CLC Number:
[1] Ramesh R, Mannan M A, Poo A N. Error compensation in machine tools—a review part I: geometric, cutting-force induced and fixture-dependent errors[J]. International Journal of Machine Tools & Manufacture, 2000, 40(9):1235-1256. [2] Wahid Khan Abdul, Chen Wu-yi. Systematic geometric error modeling for workspace volumetric calibration of 5-axis turbine blade grinding machine[J]. Chinese Journal of Aeronautics, 2010, 23(5):604-615. [3] 韩飞飞,赵继,张雷,等. 数控机床几何精度综合解析与试验研究[J]. 机械工程学报,2012,48(21):141-147. Han Fei-fei, Zhao Ji, Zhang Lei, et al. Comprehensive analysis and experimental study on the geometric accuracy of CNC machine tools[J]. Journal of Mechanical Engineering, 2012, 48(21):141-147. [4] 朱建忠,李圣怡,黄凯. 超精密机床变分法精度分析及其应用[J]. 国防科技大学学报,1997,19(2):36-40. Zhu Jian-zhong, Li Sheng-yi, Huang Kai. Variational method of ultra-precision machine tool accuracy analysis and its application[J]. Journal of National University of Defense Technology, 1997, 19(2):36-40. [5] Chen G, Liang Y, Sun Y, et al. Volumetric error modeling and sensitivity analysis for designing a five-axis ultra-precision machine tool[J]. International Journal of Advanced Manufacturing Technology, 2013, 68(9-12):2525-2534. [6] Cui G, Lu Y, Li J, et al. Geometric error compensation software system for CNC machine tools based on NC program reconstructing[J]. International Journal of Advanced Manufacturing Technology, 2012, 63(1-4):169-180. [7] Chen J, Lin S, He B. Geometric error compensation for multi-axis CNC machines based on differential transformation[J]. International Journal of Advanced Manufacturing Technology, 2014, 71(1-4):635-642. [8] Fu G, Fu J, Xu Y, et al. Product of exponential model for geometric errorintegration of multi-axis machine tools[J]. International Journal of Advanced Manufacturing Technology, 2014, 71(9-12):1653-1667. [9] 王维,杨建国,姚晓栋,等. 数控机床几何误差和热误差综合建模及实时补偿[J]. 机械工程学报, 2012, 48(7):165-170. Wang Wei, Yang Jian-guo, Yao Xiao-dong, et al. Comprehensive modeling and real-time compensation of geometric error and thermal error of CNC machine tools[J]. Journal of Mechanical Engineering, 2012, 48(7):165-170. [10] 孟婥, 车仁生. 并联六坐标测量机的误差模型和误差补偿[J]. 哈尔滨工业大学学报, 2004, 36(3):317-320. Meng Chuo, Che Ren-sheng. Error model and error compensation of six-freedom-degree parallel mechanism CMM[J]. Journal of Harbin Institute of Technology, 2004, 36(3):317-320. [11] 程刚,葛世荣. 3-RPS对称并联式机械腿误差模型及分析[J]. 中国矿业大学学报,2009,38(1):50-55. Cheng Gang, Ge Shi-rong. Error model and analysis of 3-RPS symmetrical parallel robot leg with three degree-of-freedom[J]. Journal of China University of Mining & Technology, 2009,38(1):50-55. [12] Fan Kuang-chao, Wang Hai, Zhao Jun-wei, et al. Sensitivity analysis of the 3-PRS parallel kinematic spindle platform of a serial-parallel machine tool[J]. International Journal of Machine Tool & Manufacture,2003,43 (15):1561-1569. [13] 黄田,李亚,李思维,等. 一种三自由度并联机构几何误差建模、灵敏度分析及装配工艺设计[J]. 中国科学(E辑), 2002, 32(5):628-635. Huang Tian, Li Ya, Li Si-wei, et al. Modeling, sensitivity analysis and assembly process design for a 3-DOF parallel mechanism[J]. Science in China(Series E), 2002, 32(5):628-635. [14] 李新友,陈五一,韩先国. 基于正交设计的 3-RPS 并联机构精度分析与综合[J]. 北京航空航天大学学报,2011,37(8): 979-984. Li Xin-you, Chen Wu-yi, Han Xian-guo. Accuracy analysis and synthesis of 3-RPS parallel machine based on orthogonal design[J]. Journal of Beijing University Aeronautics and Astronautics,2011, 37(8): 979-984. [15] Sun Tao, Song Yi-min, Li Yong-gang. Separation of comprehensive geometrical errors of a 3-DOF parallel manipulator based on jacobian matrix and its sensitivity analysis with monte-carlo method[J]. Chinese Journal of Mechanical Engineering, 2011, 24(3): 406-413. [16] Weikert S. R-test, a new device for accuracy measurements on five axis machine tools[J]. CIRP Annals-Manufacturing Technology, 2013, 53(1):429-432. [17] Hong C F, Ibaraki S. Non-contact R-test with laser displacement sensors for error calibration of five-axis machine tools[J]. Precision Engineering Journal of the International Societies For Precision Engineering and Nanotechnology, 2013, 37(1): 159-171. [18] Lee K I, Yang S H. Robust measurement method and uncertainty analysis for position-independent geometric errors of a rotary-axis using a double ball-bar[J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(2): 231-239. [19] Zhang G, Ouyang R, Lu B, et al. A displacement method for machine geometry calibration[J]. CIRP Annals Manufacturing Technology, 1988, 37(1):515-518. [20] Chen G, Yuan J, Ni J. A displacement measurement approach for machine geometric error assessment[J]. International Journal of Machine Tools & Manufacture, 2001, 41(1):149-161. [21] Wang C. Laser vector measurement technique for the determination and compensation of volumetric positioning errors[J]. Basic Theory, Review of Scientific Instruments, 2000, 71(10):3933-3937. [22] Cui C, Feng Q, Zhang B, et al. System for simultaneously measuring 6 DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser[J]. Optics Express, 2016, 24(6): 6735-6748. [23] Zhong G, Wang C, Yang S, et al. Position geometric error modeling, identification and compensation for large 5-axis machining center prototype[J]. International Journal of Machine Tools & Manufacture, 2015, 89: 142-150. |
[1] | ZHAO Guo-juan, ZHANG Lei, LU Lei, HAN Fei-fei, ZHAO Ji. Modeling and analysis of the volumetric errors of four-axis polishing platform [J]. 吉林大学学报(工学版), 2014, 44(6): 1676-1683. |
|