吉林大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 1102-1108.doi: 10.13229/j.cnki.jdxbgxb201704013

• Orginal Article • Previous Articles     Next Articles

Application of surface acoustic wave in controlled synthesis of gold nanoparticles

LIU Guo-jun1, ZHANG Yan-yan1, YANG Xu-hao1, LI Xin-bo2, LIU Jian-fang1, YANG Zhi-gang1   

  1. 1.College of Mechanical Science and Engineering, Jilin University, Changchun 130022,China;
    2.College of Communication Engineering, Jilin University, Changchun 130022, China
  • Received:2016-05-28 Online:2017-07-20 Published:2017-07-20

Abstract: In order to controllably prepare gold nanoparticles with uniform size and good morphology, a synthesis method based on Surface Acoustic Wave (SAW) is proposed. The controllable microfluidic system based on SAW is used to perturb the synthesizing process and realize the controlled synthesis of gold nanoparticles. The parameters of the Interdigital Transducers (IDTs) are designed and the number of IDTs is optimized by MATLAB. Afterward, the controllable microfluidic system based on SAW is designed and manufactured. The experiments under different voltages are carried out to analyze the influence of voltage on the experiment results. Results show that the gold nanoparticles with different concentrations, morphologies and monodisperses can be synthesized under different loading voltages, which further verifies the controllability and feasibility of the proposed synthesis method.

Key words: fluid transmission and control, surface acouctic wave, piezoelectric actuation, microfluidic reactor, gold nanoparticles, controlled synthesis

CLC Number: 

  • TN384
[1] Hamouda I M. Current perspectives of nanoparticles in medical and dental biomaterials[J]. Journal of Biomedical Research,2012,26(3):143-151.
[2] Donaldson K, Stone V, Tran C L, et al. A new frontier in particle toxicology relevant to both the workplace and general environment and to consumer safety[J]. Nanotoxicology, 2004,61:727-728.
[3] Chen L C, Wei C W, Souris J S, et al. Enhanced photoacoustic stability of gold nanorods by silica matrix confinement[J]. Journal of Biomedical Optics,2010,15(1):016010.
[4] Mieszawska A J, Mulder W J M, Fayad Z A, et al. Multifunctional gold nanoparticles for diagnosis and therapy of disease[J]. Molecular Pharmaceutics, 2013, 10(3): 831-847.
[5] Frost C G, Mutton L. Heterogeneous catalytic synthesis using microreactor technology[J]. Green Chemistry, 2010, 12(10): 1687-1703.
[6] Chan P P, Dong P K. Dual-channel Microreactor for gas-liquid syntheses[J]. Journal of the American Chemical Society, 2010, 132(29): 10102-10106.
[7] 杨敬松,左春柽,连静,等. 基于数字微流控生物芯片的液滴调度算法[J]. 吉林大学学报:工学版,2007, 37(6): 1380-1385.
Yang Jing-song, Zuo Chun-cheng, Lian Jing, et al. Droplet scheduling algorithm for digital microfluidics-based biochips[J]. Journal of Jilin University (Engineering and Technology Edition), 2007, 37(6):1380-1385.
[8] 李淑娴,吴一辉,宣明,等. 用于生化分析的聚二甲基硅氧烷微混合器[J]. 吉林大学学报:工学版,2006, 36(增刊1): 110-115.
Li Shu-xian, Wu Yi-hui, Xuan Ming, et al. Polymethylsiloxane micromixer in biochemical analyse[J]. Journal of Jilin University (Engineering and Technology Edition), 2006, 36(Sup.1):110-115.
[9] 赵天,杨志刚,刘建芳,等. 利用压电微泵驱动和脉动混合可控合成金纳米粒子[J]. 光学精密工程,2014, 22(4): 904-910.
Zhao Tian, Yang Zhi-gang, Liu Jian-fang, et al. The synthesis-controlled of gold nanoparticles based on PZT micropump and pulsating mixing technology[J]. Optics and Precision Engineering, 2014, 22(4): 904-910.
[10] Miller D L, Smith N B, Bailey M R, et al. Overview of therapeutic ultrasound applications and safety considerations[J]. Ultrasound in Medicine, 2012, 31(4): 623-634.
[11] Ding X, Li P, Lin S S, et al. Surface acoustic wave microfluids[J]. Lab Chip, 2013, 13(18): 3626-3649.
[12] Gronewold T M A. Surface acoustic wave sensors in the bioanalytical field: Recent trends and challenges[J]. Analytical Chemistry Acta, 2007, 603(2): 119-128.
[13] Ruppel C C W, Reindl L, Weigel R. SAW devices and their wireless communications applications[J]. IEEE Microwave Magazine, 2002, 3(2): 65-71.
[14] Tan M K, Friend J R, Yeo L Y. Interfacial jetting phenomena induced by focused surface vibrations[J]. Physical Review Letters, 2009, 103(2): 024501
[1] LIU Jian-fang, WANG Ji-bo, LIU Guo-jun, LI Xin-bo, LIANG Shi-hai, YANG Zhi-gang. PMMA micromixer embedded with 3D channel based on piezoelectric actuation [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1500-1507.
[2] LIU Guo-jun, MA Xiang, YANG Zhi-gang, WANG Cong-hui, WU Yue, WANG Teng-fei. Integrated pulsation micro mixing chip for three-phase flow [J]. 吉林大学学报(工学版), 2018, 48(4): 1063-1071.
[3] LIU Xiang-yong, LI Wan-li. Electro-hydraulic proportional control model of accumulator [J]. 吉林大学学报(工学版), 2018, 48(4): 1072-1084.
[4] WEN De-sheng, CHEN Fan, ZHEN Xin-shuai, ZHOU Cong, WANG Jing, SHANG Xu-dong. Application of pressure control loop with double-stator pumps and motors [J]. 吉林大学学报(工学版), 2017, 47(2): 504-509.
[5] WEN De-sheng, LIU Qiao-yan, LIU Zhong-xun, GAO Jun-feng, ZHOU Rui-bin. Rotor radial force of double-stator single-acting motor [J]. 吉林大学学报(工学版), 2015, 45(6): 1825-1830.
[6] WEN De-sheng, ZHENG Zhen-quan, WANG Yuan, YANG Jie, ZHANG Kai-ming, ZHANG San-xi. Analysis of rotational speed and torque of differential connection of asymmetric multi-speed hydraulic motor [J]. 吉林大学学报(工学版), 2014, 44(5): 1342-1346.
[7] MA Wen-xing,HU Jing,CHU Ya-xu,WANG Song-lin,WU Yue-shi. Dynamic load strength analysis of over-running clutch of dual turbine torque [J]. 吉林大学学报(工学版), 2014, 44(3): 675-679.
[8] MA Wen-xing, SONG Jian-jun, LIU Chun-bao, HU Jing, CHU Ya-xu. Calculation method of outlet pressure of open-type hydrodynamic retarder [J]. 吉林大学学报(工学版), 2014, 44(01): 86-90.
[9] YUAN Zhe, MA Wen-xing, LU Xiu-quan, HU Jing, YANG Shan-shan. Dynamic braking performance prediction and analysis of hydrodynamic retarder [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 160-164.
[10] YUAN Zhe, MA Wen-xing, LIU Chun-bao, LIU Hao. Temperature field analysis of the open-type hydrodynamic retarder of heavy vehicle [J]. 吉林大学学报(工学版), 2013, 43(05): 1271-1275.
[11] LIU Shu-cheng, WEI Wei, YAN Qing-dong, ZHOU Qia. Simulation method of idling characteristic of hydrodynamic torque converter stator wheel [J]. 吉林大学学报(工学版), 2013, 43(01): 22-27.
[12] YAN Qing-dong, ZOU Bo, WEI Wei. Numerical investigation of brake performance of hydrodynamic tractor-retarder assembly [J]. 吉林大学学报(工学版), 2012, 42(01): 91-97.
[13] LIU Cheng-qiang, JIANG Ji-hai. Flow characteristic of inclined plate and axial plunger type hydraulic transformer [J]. 吉林大学学报(工学版), 2012, 42(01): 85-90.
[14] QI Pan-guo, WANG Hui, HAN Jun-wei. Structured singular value-synthesis based robust control of hydraulic control loading system [J]. 吉林大学学报(工学版), 2011, 41(4): 1004-1009.
[15] LU Xiu-quan,CHU Ya-xu,CAI Wei,MA Wen-xing,SONG Jian-jun. Predicting method for partial-filling performance of hydrodynamic retarder based on one-dimensional flow beam theory [J]. 吉林大学学报(工学版), 2011, 41(4): 988-992.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!